Logo - springer
Slogan - springer

Physics - Complexity | Statistical Physics

Statistical Physics

Guenault, Tony

2nd ed. 1995. 2nd rev. and enlarged printing 2007, XI, 204 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4020-5975-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4020-5974-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Offers a comprehensive and fundamental, but down-to-earth approach of statistical physics
  • Features statistics of gases and condensed matter physics
  • Details applications such as superfluids and astrophysics
  • Discusses chemical thermodynamics, including chemical equilibrium

In this revised and enlarged second edition of an established text, Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication.

The book adopts a straightforward quantum approach to statistical averaging from the outset. The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for example, liquid helium-3 and helium-4, and statistics under extreme conditions (superconductivity and astrophysical systems).

Content Level » Graduate

Keywords » Fitting - entropy and disorder - gases and fluids - macrostate and microstates - magnetism - statistical physics - thermodynamics

Related subjects » Classical Continuum Physics - Complexity - Physical & Information Science

Table of contents 

Preface 1: Basic Ideas. 1.1. The Macrostate. 1.2. Microstates. 1.3. The Average Postulate. 1.4. Distributions. 1.5. The Statistical method in Outline. 1.6. A Model Example. 1.7. Statistical Entropy and Microstates. 1.8 Summary. 2: Distinguishable Particles. 2.1. The Thermal Equilibrium Distribution. 2.2. What are a and ß? 2.3. A Statistical Definition of Temperature. 2.4. The Boltzman Distribution and the Partition Function. 2.5. Calculation of Thermodynamic Functions. 2.6. Summary. 3: Two Examples. 3.1. A spin-½ Solid. 3.2. Localized harmonic Oscillators. 3.3. Summary. 4: Gases: The Density of States. 4.1. Fitting waves into boxes. 4.2. Other Information for Statistical Physics. 4.3. An Example – Helium Gas. 4.4. Summary 5: Gases: The Distributions. 5.1. Distribution in groups. 5.2. Identical Particles – Fermions and Bosons. 5.3. Counting Microstates for Gases. 5.4. The Three Distributions. 5.5. Summary. 6: Maxwell-Boltzmann Gases. 6.1. The validity of the Maxwell-Boltzmann Limit. 6.2. The Maxwell-Boltzmann Distribution of Speeds. 6.3. The Connection to Thermodynamics. 6.4. Summary. 7: Diatomic Gases. 7.1. Energy Contributions in Diatomic Gases. 7.2. Heat Capacity of a Diatomic Gas. 7.3. The Heat Capacity of Hydrogen. 7.4. Summary. 8: Fermi-Dirac Gases. 8.1. Properties of an Ideal Fermi-Dirac Gas. 8.2. Application to Metals. 8.3. Application to Helium-3. 8.4. Summary. 9: Bose-Einstein Gases. 9.1. Properties of an Ideal Bose-Einstein Gas. 9.2. Application to Helium-4. 9.3. Phoney Bosons. 9.4. A Note about Cold Atoms. 9.5. Summary. 10: Entropy in Other Situations. 10.1. Entropy and Disorder. 10.2. An Assembly at Fixed Temperature. 10.3. Vacancies in Solids. 11: Phase Transitions. 11.1. Types of Phase Transition. 11.2. Ferromagnetism of a spin-½ Solid. 11.3. Real Ferromagnetic Materials. 11.4. Order-Disorder Transformations in Alloys. 12: Two New Ideas. 12.1. Statistics or Dynamics. 12.2. Ensembles – a LargerView. 13: Chemical Thermodynamics. 13.1. Chemical Potential Revisited. 13.2. The Grand Canonical Ensemble. 13.3. Ideal Gases in the Grand Ensemble. 13.4. Mixed Systems and Chemical Reactions. 14: Dealing with Interactions. 14.1. Electrons in Metals. 14.2. Liquid Helium-3: a Fermi Liquid. 14.3. Liquid Helium-4: a Bose Liquid? 14.4. Real Imperfect Gases. 15: Statistics under Extreme Conditions. 15.1. Superfluid States in Fermi-Dirac Systems. 15.2. Statistics in Astrophysical Systems. Appendix A – Some Elementary Counting Problems Appendix B – Some Problems with Large Numbers Appendix C – Some Useful Integrals Appendix D – Some Useful Constants Appendix E – Exercises Appendix F – Answers to Exercises Index

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Physics, Dynamical Systems and Complexity.