Logo - springer
Slogan - springer

Physics - Classical Continuum Physics | Mechanics of Continua and Wave Dynamics

Mechanics of Continua and Wave Dynamics

Brekhovskikh, Leonid M., Goncharov, Valery

Original Russian edition published by Nauka Publishing House, Moscow 1982

Softcover reprint of the original 2nd ed. 1994, XII, 342 pp. 99 figs.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-642-85034-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-57336-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

Mechanics of Continua and Wave Dynamics is a textbook for a course on the mechanics of solids and fluids with the emphasis on wave theory. The material is presented with simplicity and clarity but also with mathematical rigor. Many wave phenomena, especially those of geophysical nature (different types of waves in the ocean, seismic waves in the earth crust, wave propagation in the atmosphere, etc.), are considered. Each subject is introduced with simple physical concepts using numerical examples and models. The treatment then goes into depth and complicated aspects are illustrated by appropriate generalizations. Numerous exercises with solutions will help students to comprehend and assimilate the ideas.

Content Level » Research

Keywords » Oscillation - Vibration - Wave - acoustics - fluid dynamics - fluid mechanics - physics of the atmosphere - physics of theocean - seismology - wave equation

Related subjects » Atomic, Molecular, Optical & Plasma Physics - Classical Continuum Physics - Mechanics - Oceanography - Theoretical, Mathematical & Computational Physics

Table of contents 

I Theory of Elasticity.- 1. The Main Types of Strain in Elastic Solids.- 1.1 Equations of Linear Elasticity Theory.- 1.1.1 Hooke’s Law.- 1.1.2 Differential Form of Hooke’s Law. Principle of Superposition.- 1.2 Homogeneous Strains.- 1.2.1 An Elastic Body Under the Action of Hydrostatic Pressure.- 1.2.2 Longitudinal Strain with Lateral Displacements Forbidden.- 1.2.3 Pure Shear.- 1.3 Heterogeneous Strains.- 1.3.1 Torsion of a Rod.- 1.3.2 Bending of a Beam.- 1.3.3 Shape of a Beam Under Load.- 1.4 Exercises.- 2. Waves in Rods, Vibrations of Rods.- 2.1 Longitudinal Waves.- 2.1.1 Wave Equation.- 2.1.2 Harmonic Waves.- 2.2 Reflection of Longitudinal Waves.- 2.2.1 Boundary Conditions.- 2.2.2 Wave Reflection.- 2.3 Longitudinal Oscillations of Rods.- 2.4 Torsional Waves in a Rod. Torsional Vibrations.- 2.5 Bending Waves in Rods.- 2.5.1 The Equation for Bending Waves.- 2.5.2 Boundary Conditions. Harmonic Waves.- 2.5.3 Reflection of Waves. Bending Vibrations.- 2.6 Wave Dispersion and Group Velocity.- 2.6.1 Propagation of Nonharmonic Waves.- 2.6.2 Propagation of Narrow-Band Disturbances.- 2.7 Exercises.- 3. General Theory of Stress and Strain.- 3.1 Description of the State of a Deformed Solid.- 3.1.1 Stress Tensor.- 3.1.2 The Strain Tensor.- 3.1.3 The Physical Meaning of the Strain Tensor’s Components.- 3.2 Equations of Motion for a Continuous Medium.- 3.2.1 Derivation of the Equation of Motion.- 3.2.2 Strain-Stress Relation. Elasticity Tensor.- 3.3 The Energy of a Deformed Body.- 3.3.1 The Energy Density.- 3.3.2 The Number of Independent Components of the Elasticity Tensor.- 3.4 The Elastic Behaviour of Isotropic Bodies.- 3.4.1 The Generalized Hooke’s Law for an Isotropic Body.- 3.4.2 The Relationship Between Lamé’s Constants and E and v.- 3.4.3 The Equations of Motion for an Isotropic Medium.- 3.5 Exercises.- 4. Elastic Waves in Solids.- 4.1 Free Waves in a Homogeneous Isotropic Medium.- 4.1.1 Longitudinal and Transverse Waves.- 4.1.2 Boundary Conditions for Elastic Waves.- 4.2 Wave Reflection at a Stress-Free Boundary.- 4.2.1 Boundary Conditions.- 4.2.2 Reflection of a Horizontally Polarized Wave.- 4.2.3 The Reflection of Vertically Polarized Waves.- 4.2.4 Particular Cases of Reflection.- 4.2.5 Inhomogeneous Waves.- 4.3 Surface Waves.- 4.3.1 The Rayleigh Wave.- 4.3.2 The Surface Love Wave.- 4.3.3 Some Features of Love’s Waves.- 4.4 Exercises.- 5. Waves in Plates.- 5.1 Classification of Waves.- 5.1.1 Dispersion Relations.- 5.1.2 Symmetric and Asymmetric Modes.- 5.1.3 Cut-Off Frequencies of the Modes.- 5.1.4 Some Special Cases.- 5.2 Normal Modes of the Lowest Order.- 5.2.1 Quasi-Rayleigh Waves at the Plate’s Boundaries.- 5.2.2 The Young and Bending Waves.- 5.3 Equations Describing the Bending of a Thin Plate.- 5.3.1 Thin Plate Approximation.- 5.3.2 Sophie Germain Equation.- 5.3.3 Bending Waves in a Thin Plate.- 5.4 Exercises.- II Fluid Mechanics.- 6. Basic Laws of Ideal Fluid Dynamics.- 6.1 Kinematics of Fluids.- 6.1.1 Eulerian and Lagrangian Representations of Fluid Motion.- 6.1.2 Transition from One Representation to Another.- 6.1.3 Convected and Local Time Derivatives.- 6.2 System of Equations of Hydrodynamics.- 6.2.1 Equation of Continuity.- 6.2.2 The Euler Equation.- 6.2.3 Completeness of the System of Equations.- 6.3 The Statics of Fluids.- 6.3.1 Basic Equations.- 6.3.2 Hydrostatic Equilibrium. Väisälä Frequency.- 6.4 Bernoulli’s Theorem and the Energy Conservation Law.- 6.4.1 Bernoulli’s Theorem.- 6.4.2 Some Applications of Bernoulli’s Theorem.- 6.4.3 The Bernoulli Theorem as a Consequence of the Energy-Conservation Law.- 6.4.4 Energy Conservation Law in the General Case of Unsteady Flow.- 6.5 Conservation of Momentum.- 6.5.1 The Specific Momentum Flux Tensor.- 6.5.2 Euler’s Theorem.- 6.5.3 Some Applications of Euler’s Theorem.- 6.6 Vortex Flows of Ideal Fluids.- 6.6.1 The Circulation of Velocity.- 6.6.2 Kelvin’s Circulation Theorem.- 6.6.3 Helmholtz Theorems.- 6.7 Exercises.- 7. Potential Flow.- 7.1 Equations for a Potential Flow.- 7.1.1 Velocity Potential.- 7.1.2 Two-Dimensional Flow. Stream Function.- 7.2 Applications of Analytical Functions to Problems of Hydrodynamics.- 7.2.1 The Complex Flow Potential.- 7.2.2 Some Examples of Two-Dimensional Flows.- 7.2.3 Conformal Mapping.- 7.3 Steady Flow Around a Cylinder.- 7.3.1 Application of Conformal Mapping.- 7.3.2 The Pressure Coefficient.- 7.3.3 The Paradox of d’Alembert and Euler.- 7.3.4 The Flow Around a Cylinder with Circulation.- 7.4 Irrotational Flow Around a Sphere.- 7.4.1 The Flow Potential and the Particle Velocity.- 7.4.2 The Induced Mass.- 7.5 Exercises.- 8. Flows of Viscous Fluids.- 8.1 Equations of Flow of Viscous Fluid.- 8.1.1 Newtonian Viscosity and Viscous Stresses.- 8.1.2 The Navier-Stokes Equation.- 8.1.3 The Viscous Force.- 8.2 Some Examples of Viscous Fluid Flow.- 8.2.1 Couette Flow.- 8.2.2 Plane Poiseuille Flow.- 8.2.3 Poiseuille Flow in a Cylindrical Pipe.- 8.2.4 Viscous Fluid Flow Around a Sphere.- 8.2.5 Stokes’ Formula for Drag.- 8.3 Boundary Layer.- 8.3.1 Viscous Waves.- 8.3.2 The Boundary Layer. Qualitative Considerations.- 8.3.3 Prandl’s Equation for a Boundary Layer.- 8.3.4 Approximate Theory of a Boundary Layer in a Simple Case.- 8.4 Exercises.- 9. Elements of the Theory of Turbulence.- 9.1 Qualitative Considerations. Hydrodynamic Similarity.- 9.1.1 Transition from a Laminar to Turbulent Flow.- 9.1.2 Similar Flows.- 9.1.3 Dimensional Analysis and Similarity Principle.- 9.1.4 Flow Around a Cylinder at Different Re.- 9.2 Statistical Description of Turbulent Flows.- 9.2.1 Reynolds’ Equation for Mean Flow.- 9.2.2 Turbulent Viscosity.- 9.2.3 Turbulent Boundary Layer.- 9.3 Locally Isotropic Turbulence.- 9.3.1 Properties of Developed Turbulence.- 9.3.2 Statistical Properties of Locally Isotropic Turbulence.- 9.3.3 Kolmogorov’s Similarity Hypothesis.- 9.4 Exercises.- 10. Surface and Internal Waves in Fluids.- 10.1 Linear Equations for Waves in Stratified Fluids.- 10.1.1 Linearization of the Hydrodynamic Equations.- 10.1.2 Linear Boundary Conditions.- 10.1.3 Equations for an Incompressible Fluid.- 10.2 Surface Gravity Waves.- 10.2.1 Basic Equations.- 10.2.2 Harmonic Waves.- 10.2.3 Shallow- and Deep-Water Approximations.- 10.2.4 Wave Energy.- 10.3 Capillary Waves.- 10.3.1 “Pure” Capillary Waves.- 10.3.2 Gravity-Capillary Surface Waves.- 10.4 Internal Gravity Waves.- 10.4.1 Introductory Remarks.- 10.4.2 Basic Equation for Internal Waves. Boussinesq Approximation.- 10.4.3 Waves in an Unlimited Medium.- 10.5 Guided Propagation of Internal Waves.- 10.5.1 Qualitative Analysis of Guided Propagation.- 10.5.2 Simple Model of an Oceanic Waveguide.- 10.5.3 Surface Mode. “Rigid Cover” Condition.- 10.5.4 Internal Modes.- 10.6 Exercises.- 11. Waves in Rotating Fluids.- 11.1 Inertial (Gyroscopic) Waves.- 11.1.1 The Equation for Waves in a Homogeneous Rotating Fluid.- 11.1.2 Plane Harmonic Inertial Waves.- 11.1.3 Waves in a Fluid Layer. Application to Geophysics.- 11.2 Gyroscopic-Gravity Waves.- 11.2.1 General Equations. The Simplest Model of a Medium.- 11.2.2 Classification of Wave Modes.- 11.2.3 Gyroscopic-Gravity Waves in the Ocean.- 11.3 The Rossby Waves.- 11.3.1 The Tangent of ?-Plane Approximation.- 11.3.2 The Barotropic Rossby Waves.- 11.3.3 Joint Discussion of Stratification and the ?-Effect.- 11.3.4 The Rossby Waves in the Ocean.- 11.4 Exercises.- 12. Sound Waves.- 12.1 Plane Waves in Static Fluids.- 12.1.1 The System of Linear Acoustic Equations.- 12.1.2 Plane Waves.- 12.1.3 Generation of Plane Waves. Inhomogeneous Waves.- 12.1.4 Sound Energy.- 12.2 Sound Propagation in Inhomogeneous Media.- 12.2.1 Plane Wave Reflection at the Interface of Two Homogeneous Media.- 12.2.2 Some Special Cases. Complete Transparency and Total Reflection.- 12.2.3 Energy and Symmetry Considerations.- 12.2.4 A Slowly-Varying Medium. Geometrical-Acoustics Approximation.- 12.2.5 Acoustics Equations for Moving Media.- 12.2.6 Guided Propagation of Sound.- 12.3 Spherical Waves.- 12.3.1 Spherically-Symmetric Solution of the Wave Equation.- 12.3.2 Volume Velocity or the Strength of the Source. Reaction of the Medium.- 12.3.3 Acoustic Dipole.- 12.4 Exercises.- 13. Magnetohydrodynamics.- 13.1 Basic Concepts of Magnetohydrodynamics.- 13.1.1 Fundamental Equations.- 13.1.2 The Magnetic Pressure. Freezing of the Magnetic Field in a Fluid.- 13.1.3 The Poiseuille (Hartmann) Flow.- 13.2 Magnetohydrodynamic Waves.- 13.2.1 Alfvén Waves.- 13.2.2 Magnetoacoustic Waves.- 13.2.3 Fast and Slow Magnetoacoustical Waves.- 13.3 Exercises.- 14. Nonlinear Effects in Wave Propagation.- 14.1 One-Dimensional Nonlinear Waves.- 14.1.1 The Nonlinearity Parameter.- 14.1.2 Model Equation. Generation of Second Harmonics.- 14.1.3 The Riemann Solution. Shock Waves.- 14.1.4 Dispersive Media. Solitons.- 14.2 Resonance Wave Interaction.- 14.2.1 Conditions of Synchronism.- 14.2.2 The Method of Slowly-Varying Amplitudes.- 14.2.3 Multiwave Interaction.- 14.2.4 Nonlinear Dispersion.- 14.3 Exercises.- Appendix: Tensors.- Bibliographical Sketch.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mechanics.