Series: ERCOFTAC Series, Vol. 12
Meyers, Johan, Geurts, Bernard, Sagaut, Pierre (Eds.)
2008, XX, 378 p.
Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-1-4020-8578-9
digitally watermarked, no DRM
Included Format: PDF
download immediately after purchase
Hardcover version
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-1-4020-8577-2
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-90-481-7918-3
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, leading to an intricate and unpredictable situation. A full understanding of the interacting error dynamics in large-eddy simulations is still lacking. To ensure the reliability of large-eddy simulations for a wide range of industrial users, the development of clear standards for the evaluation, prediction, and control of simulation errors in LES is summoned. The workshop on Quality and Reliability of Large-Eddy Simulations, held October 22-24, 2007 in Leuven, Belgium (QLES2007), provided one of the first platforms specifically addressing these aspects of LES.
Content Level » Research
Keywords » Dissipation - Large Eddy Simulation - Large-Eddy Simulation - convection - fluid mechanics - quality - turbulence
Related subjects » Classical Continuum Physics - Theoretical, Mathematical & Computational Physics
Get alerted on new Springer publications in the subject area of Classical Continuum Physics.