Logo - springer
Slogan - springer

Physics - Biophysics & Biological Physics | Biomimetic Membranes for Sensor and Separation Applications

Biomimetic Membranes for Sensor and Separation Applications

Hélix-Nielsen, Claus (Ed.)

2012, XVI, 292 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$139.00

(net) price for USA

ISBN 978-94-007-2184-5

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-94-007-2183-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-94-017-8224-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • A state-of-the-art Work on advances in developing biomimetic membranes for technological applications
  • Provides an overview of what is known in the field, where additional research is needed, and where the field is heading
  • An associate professor at Denmark Technical University and the Research Director at Aquaporin, the editor is at home both on the theoretical side and on the applied side of his subject

This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field.

Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are presented. Also new developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins are discussed.  The basic concepts of membrane barrier properties are introduced and discussed in terms of lipid and polymer based membranes. Once a given protein is reconstituted in its final host biomimetic matrix, its stability needs to be maintained and controlled and the challenges associated with insertion and stabilization of alpha-helical bundle proteins are exemplified with aquaporin and ion channels as well as sodium-potassium ATPase proteins.

The concept of multi-scale modeling is introduced and exemplified by the use of molecular dynamics, dissipative particle dynamics, and computational fluid dynamics simulations illustrating the issues involved in developing and describing biomimetic systems in a wide range of time and length scales. Scalability is a general issue for all nano-inspired technology developments and many biomimetic membrane applications require that the device can be used in the macroscopic realm. This challenge is addressed here in the context of fabricating biomimetic components, membrane arrays, and compartmentalized systems together with the challenges related to microfluidic design strategies for biomimetic device developments.

Content Level » Research

Keywords » aquaporin protein - block copolymer building blocks - ion channels - large scale membrane array - membrane encapsulation strategies - microfluidic encapsulation - osmoregulation - voltage-gated ion channels - water and ion channels

Related subjects » Biochemistry & Biophysics - Biomaterials - Biomedical Engineering - Biophysics & Biological Physics

Table of contents 

1 Sensing Meets Separation: Water Transport Across Biological Membranes Stanley D. Hillyard; 2 Nature Meets Technology: Forward Osmosis Membrane Technology Filicia Wicaksana, Anthony G. Fane, Chuyang Tang, and Rong Wang; 3 Polymer-Based Biomimetic Membranes for Desalination Manish Kumar, Michelle M. Payne, Sean K. Poust, and Julie L. Zilles; 4 Ion-Selective Biomimetic Membranes Henk Miedema; 5 Vesicle Arrays as Model-Membranes and Biochemical Reactor Systems Sune M. Christensen and Dimitrios Stamou; 6 Active Biomimetic Membranes Flemming Cornelius; 7 Passive Transport Across Biomimetic Membranes Karin Stibius, Sania Bäckström, and Claus Hélix-Nielsen; 8 Multi-scale Modeling of Biomimetic Membranes Hans Enggrob, Lars Yde, Mathias Gruber, and Himanshu Khandelia; 9 Regulation of Protein Function by Membrane Elastic Properties Jens A. Lundbæk and Olaf S. Andersen; 10 Large Scale Biomimetic Membrane Arrays Mark Perry, Christian Rein, and Jörg Vogel; 11 Systems for Production of Proteins for Biomimetic Membrane Devices Nicola Altamura and Giuseppe Calamita; 12 Strategies for Integrating Membrane Proteins in Biomembranes Jesper S. Hansen, Inés Plasencia, and Kamila Pszon-Bartosz; 13 Microfl uidic Encapsulation of Biomimetic Membranes Oliver Geschke; Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Membranes.