Skip to main content

Handbook of Single-Molecule Biophysics

  • Book
  • © 2009

Overview

  • Describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping

  • Addresses the use of single-molecule techniques in super-resolution and functional imaging

  • Includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells

  • Integrates single-molecule biophysics and nanoscience

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (21 chapters)

Keywords

About this book

During the last decade, a number of novel biophysical methods have been developed that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at the fundamental level of sensitivity, that of a single molecule, has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them.

Editorial Advisory Board: Daniel Müller, Cheng Zhu, Claus Seidel, Xiaowei Zhuang, Thomas Schmidt, Nynke Dekker.

Reviews

From the reviews: “The Handbook of Single-Molecule Biophysics, edited by Hinterdorfer (Johannes Kepler Univ. of Linz, Austria) and van Oijen (Harvard Medical School), contains 21 chapters that address various aspects of techniques used to investigate single-molecule biophysics. The chapters, many authored by leading experts in their respective fields, cover specialized biophysical techniques, their applications, background into the technical design, and practical aspects of implementing these approaches. … Summing Up: Recommended. Graduate students, researchers, faculty, and professionals.” (C. A. Reinhart-King, Choice, Vol. 47 (10), June, 2010)

Editors and Affiliations

  • Institut für Biophysik, Universität Linz, Linz, Austria

    Peter Hinterdorfer

  • Harvard Medical School, Harvard University, Boston, U.S.A.

    Antoine Oijen

Bibliographic Information

Publish with us