Logo - springer
Slogan - springer

Physics - Atomic, Molecular, Optical & Plasma Physics | Clusters of Atoms and Molecules - Theory, Experiment, and Clusters of Atoms

Clusters of Atoms and Molecules

Theory, Experiment, and Clusters of Atoms

Haberland, Hellmut (Ed.)

Softcover reprint of the original 1st ed. 1994, XIV, 422 pp. 197 figs., 14 tabs.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-642-84329-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-642-84331-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

Content Level » Research

Keywords » Cluster Science - Nanocrystalline Materials - Photography - Solid State - cluster - molecule - physical chemistry

Related subjects » Atomic, Molecular, Optical & Plasma Physics - Inorganic Chemistry - Materials - Physical Chemistry

Table of contents 

1 Introduction.- 1.1 What are Clusters?.- 1.2 What Makes Clusters Interesting?.- 1.3 How Does One Make Clusters?.- 1.4 Experiments with Clusters.- 1.5 Experiments Not Possible Today.- 1.6 Cluster, Tantalizing Subjects for Theoretical Studies.- 1.7 Clusters Make New Kinds of Materials.- 1.8 New Chemistry.- 1.9 Outlook.- 2 Theoretical Concepts.- 2.1 Quantum Chemistry of Clusters.- 2.1.1 Introduction.- 2.1.2 Quantum Mechanical Background.- 2.1.3 Ground State Properties of Metal Clusters.- 2.1.4 Excited States of Alkali Metal Clusters and their Spectroscopical Properties.- 2.1.5 Conclusions.- References.- 2.2 Tight-Binding and Hückel Models of Molecular Clusters.- 2.2.1 Introduction.- 2.2.2 Quantum Chemistry Background.- 2.2.3 Application to Clusters.- 2.2.4 TB Model Applied to Silicon Clusters.- 2.2.5 Applications of the Hückel Model.- 2.2.6 Conclusions.- References.- 2.3 Density Functional Calculations for Clusters.- 2.3.1 Introduction.- 2.3.2 Calculating Structures.- 2.3.3 Application to Clusters of Group VIa Elements.- 2.3.4 Structure of Phosphorus Clusters, P2 to P10.- 2.3.5 Models Based on Electron Gas Calculations.- 2.3.6 Concluding Remarks.- References.- 2.4 Transition from van der Waals to Metallic Bonding in Clusters.- 2.4.1 Introduction.- 2.4.2 Theory for the Electronic Properties of Divalent-Metal Clusters.- 2.4.3 Properties of Hgn-Clusters as a Function of Cluster Size: The Transition from van der Waals to Covalent to Metallic Bonding.- 2.4.4 Summary and Outlook.- Appendix A: Slave-Boson Approach to Electron Correlations in Small Clusters.- Appendix B: On the Size Dependence of the Ionization Energy of Small Clusters.- References.- 2.5 Analytic Cluster Models and Interpolation Formulae for Cluster Properties.- 2.5.1 Introduction.- 2.5.2 Special Role of the Analytic Cluster Model (ACM).- 2.5.3 Quantum Chemical Analytic Cluster Model (QACM).- 2.5.4 Topological Analytic Cluster Model (TACM).- 2.5.5 Theoretical Background of Interpolation Formulae.- 2.5.6 Concluding Remarks.- References.- 2.6 Shell Structure in Atoms, Nuclei and in Metals Clusters.- 2.6.1 Quantum Shells in Spherical Fermion Systems.- 2.6.2 Nuclear Shell Structure and Deformations.- 2.6.3 Shells and Supershells in Large Fermion Systems.- 2.6.4 Further Reading.- 2.6.5 Recent Developments.- References.- 2.7 Introduction to Statistical Reaction Rate Theories.- 2.7.1 Introduction.- 2.7.2 RRK Theory.- 2.7.3 RRKM Theory and the Transition State.- 2.7.4 Phase Space Theory.- 2.7.5 Product Kinetic Energy Distributions.- 2.7.6 Evaporative Cooling.- 2.7.7 Determining Cluster Dissociation Energies.- 2.7.8 Problems Associated with the Application of Statistical Theories to Clusters.- 2.7.9 Summary.- References.- 2.8 Melting and Freezing of Clusters: How They Happen and What They Mean.- 2.8.1 Introduction: The “Phases” of Clusters.- 2.8.2 Theoretical Basis.- 2.8.3 Simulations and Experiments.- 2.8.4 Implications for Bulk Matter.- References.- 3 Experimental Methods.- 3.1 Sources.- 3.1.1 Supersonic Jets.- 3.1.2 Gas Aggregation.- 3.1.3 Surface Erosion Sources.- 3.1.4 Pick-up Sources.- 3.2 Detection of Cluster Ions.- 3.3 Electron Diffraction.- 3.4 Methods for the Production of (Nearly) Mass Selected Neutral Cluster Beams.- 3.4.1 Scattering from Atomic Beams.- 3.4.2 Re-Neutralization of Ions.- 3.4.3 Summary.- 3.5 Mass Spectrometers.- 3.6 Optical Spectroscopy.- 3.7 Infrared Spectroscopy.- 3.8 Photo Electron Spectroscopy.- 3.9 Recent Developments.- References.- 4 Across the Periodic Table.- 4.1 Alkali Clusters.- 4.1.1 Introduction.- 4.1.2 Ionization of s1 Clusters.- 4.1.3 Stability of s1 Clusters.- 4.1.4 Optical Response of s1 Clusters.- References.- 4.2 Clusters of s2p1 Metals and Semiconductors.- 4.2.1 Introduction.- 4.2.2 Boron Clusters.- 4.2.3 Aluminum Clusters.- 4.2.4 Gallium, Indium, and Thallium Clusters.- 4.2.5 Conclusions.- References.- 4.3 Transition Metal Clusters: Physical Properties.- 4.3.1 Introduction.- 4.3.2 Electronic Configuration and Bonding.- 4.3.3 Mass Spectra and Magic Numbers.- 4.3.4 Ionization Energies.- 4.3.5 Dissociation and Dissociation Energies.- 4.3.6 Magnetic Properties.- 4.3.7 Optical Spectroscopy.- 4.3.8 Electron Affinities and Photoelectron Spectroscopy.- 4.3.9 Geometric Structure.- 4.3.10 Summary.- References.- 4.4 Carbon Clusters.- 4.4.1 Introduction.- 4.4.2 The Small Clusters.- 4.4.3 The Fullerenes: Cn with n ? 24.- 4.4.4 The “Buckyball” Era.- 4.4.5 Recent Developments.- References.- 4.5 Oxides and Halides of Alkali Metals.- 4.5.1 Introduction.- 4.5.2 Interatomic Forces.- 4.5.3 Neutral Clusters at Zero Temperature.- 4.5.4 Charged Clusters at Zero Temperature.- 4.5.5 Catchment Area and Free Energy.- 4.5.6 Atomic Vibrations.- 4.5.7 Photoionization of Cs-O Clusters.- 4.5.8 Recent Developments.- References.- 4.6 Rare Gas Clusters.- 4.6.1 Neutral Rare Gas Clusters in the Ground Electronic State.- 4.6.2 Potentials for Excited and Ionized Rare Gas Dimers and Clusters.- 4.6.3 Experiments with Neutral Rare Gas Clusters.- 4.6.4 Experiments with Positively Charged Rare Gas Clusters.- 4.6.5 Experiments with Negatively Charged Rare Gas Clusters.- 4.6.6 Summary.- References.- 4.7 Neutral Molecular Clusters.- 4.7.1 Introduction.- 4.7.2 Structure Calculations.- 4.7.3 Electronic Spectroscopy.- 4.7.4 Vibrational Spectroscopy.- 4.7.5 Infrared Photodissociation of Size Selected Clusters.- 4.7.6 Summary.- 4.7.7 Recent Developments.- References.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Atomic, Molecular, Optical and Plasma Physics.