Logo - springer
Slogan - springer

Physics - Applied & Technical Physics | Magnetic Resonance Detection of Explosives and Illicit Materials

Magnetic Resonance Detection of Explosives and Illicit Materials

Apih, T., Rameev, B., Mozzhukhin, G., Barras, J. (Eds.)

2014, X, 168 p. 84 illus., 50 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.99

(net) price for USA

ISBN 978-94-007-7265-6

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-94-007-7264-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.99

(net) price for USA

ISBN 978-94-007-7267-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Covers both detection of solid explosives by NQR and liquid explosives by NMR
  • Comprehensive review of recent progress and opened problems
  • Progress in 14N nuclear quadrupole resonance techniques

Detection of concealed explosives is a notoriously difficult problem, and many different approaches have been proposed to solve this problem. Nuclear quadrupole resonance (NQR) is unique in many ways. It operates in a safe AM radio frequency range, and it can remotely detect unique “fingerprint” (NQR spectrum) of many explosives, such as TNT or RDX. As such, the detection of target does not depend on the shape or material of the container, or the presence of metallic object such as triggers etc. Spectra of chemically similar compounds differ enough that their presence never causes interference or false alarms. Unfortunately, widespread use is prevented due to low sensitivity, radiofrequency interference from the noisy environment, and inability to detect liquid explosives. This book presents current state of the art of the attempts to overcome NQR sensitivity problem, either by increasing the strengths of signals generated, or by increasing the specificity of the technique through a better understanding of the factors that affect the quadrupolar parameters of specific explosives. The use of these specific quadrupolar parameters is demonstrated on signal processing techniques that can detect weak signals, which are hidden in a noisy background. The problem of differentiation of liquid explosives and benign liquids in closed containers is approached by measurements of different nuclear magnetic resonance (NMR) parameters. As shown, a couple of solutions has reached a prototype stage and could find their use in a near future.

Content Level » Graduate

Keywords » Detection of Bulk Explosives - Detection of Liquid and Solid Explosives - Nuclear Quadrupole Resonance

Related subjects » Analytical Chemistry - Applied & Technical Physics - Optics & Lasers

Table of contents 

Part 1 Nuclear Quadrupole Resonance Detection of Solids.- Further improvement of NQR technique for detection of illicit substances; T. N. Rudakov.- An Overview of NQR Signal Detection Algorithms; N. R. Butt et al.- Nuclear Quadrupole Resonance of Pantaerythritol Tetranitrate (PETN) in Different Compositions; M.D. Rowe et al.- Cross-relaxation enhanced NQR of ammonium nitrate in low magnetic field; G.V. Mozzhukhin et al.- Investigating homonuclear broadening in NQR with Carr-Purcell Meiboom-Gill performed on p-chloroaniline; M.W. Malone, K. L. Sauer.- Size Effect in 14N Nuclear Quadrupole Resonance Spectroscopy; N. Sinyavsky.- NQR Detection of Sodium Nitrite Recrystallized in Wood; J. Jover et al.- Part 2 Nuclear Magnetic Resonance Detection of Liquids.- Bottled Liquid Scanner for Security Checkpoints; Pablo J. Prado.- MagViz: A Bottled Liquids Scanner Using Ultra-low field NMR Relaxometry; R. Austin et al.-Multiparameter NMR Identification of Liquid Substances; A. B. Konov et al.- NMR-Based Liquid Explosives Detector: Advantages and Disadvantages of Different Configurations; A. Gradišek et al.-Composite Pulses in Inhomogeneous Field NMR;  G.S. Kupriyanova et al.- Part 3 Other Techniques.-Novel HTS DC Squid Solutions For NMR Applications; M.L. Chukharkin et al.- Passive Sub THz Imaging; A. Vertiy, A. Pavlyuchenko.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Security Science and Technology.