Skip to main content
  • Book
  • © 2013

High Mobility and Quantum Well Transistors

Design and TCAD Simulation

  • A comprehensive explanation of Quantum Well-based transistors and their electrical behaviour
  • A consistent set of TCAD models and parameters allows simulating the fabrication process and the electrical behaviour of a Germanium pFET technology
  • An in-depth discussion about the fabrication and electrical characterization of Implant-Free Quantum Well (IFQW) transistor technology
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Series in Advanced Microelectronics (MICROELECTR., volume 42)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (7 chapters)

  1. Front Matter

    Pages I-XVIII
  2. Introduction

    • Geert Hellings, Kristin De Meyer
    Pages 1-5
  3. Source/Drain Junctions in Germanium: Experimental Investigation

    • Geert Hellings, Kristin De Meyer
    Pages 7-26
  4. TCAD Simulation and Modeling of Ion Implants in Germanium

    • Geert Hellings, Kristin De Meyer
    Pages 27-47
  5. Electrical TCAD Simulations and Modeling in Germanium

    • Geert Hellings, Kristin De Meyer
    Pages 49-73
  6. Investigation of Quantum Well Transistors for Scaled Technologies

    • Geert Hellings, Kristin De Meyer
    Pages 75-103
  7. Implant-Free Quantum Well FETs: Experimental Investigation

    • Geert Hellings, Kristin De Meyer
    Pages 105-126
  8. Conclusions Future Work and Outlook

    • Geert Hellings, Kristin De Meyer
    Pages 127-130
  9. Back Matter

    Pages 131-140

About this book

For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials.

High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Quantum Well pFET – is discussed. Electrical testing shows remarkable short-channel performance and prototypes are found to be competitive with a state-of-the-art planar strained-silicon technology. High mobility channels, providing high drive current, and heterostructure confinement, providing good short-channel control, make a promising combination for future technology nodes.

Authors and Affiliations

  • CMOS Technology Department, IMEC, Leuven, Belgium

    Geert Hellings, Kristin De Meyer

About the authors

Geert Hellings received the B.S. and M.S. degrees in Electrical Engineering from the KU Leuven, Belgium, in 2007. His master thesis was on III-nitride-based UV detectors for space applications. He obtained the PhD degree from the Electrical Engineering Department (ESAT), Integrated Systems Division (INSYS) at the University of Leuven, Belgium. During his PhD, he worked on the integration of high-mobility channel materials for digital logic applications at imec, Leuven, Belgium. He received a Ph.D. grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), Brussels, Belgium. He won the 2008 IEEE Region 8 Student Paper Contest and received the 2011 imec Scientific Excellence Award. He has authored or co-authored approximately 70 technical papers for publication in journals and presentations at conferences and holds various patents.

 

Kristin De Meyer M.Sc. (1974), PhD (1979) KULeuven. She was holder of an IBM World Trade Postdoctoral Fellowship at the IBM T. J. Watson Research Center, Yorktown Heights, NY. Currently she is the Director of Doctoral Research in imec. Since October 1986, she has also been a Part-Time Professor with ESAT-INSYS, KUL. She was the Coordinator for IMEC in several EEC projects.  Dr. De Meyer is an IIEE fellow ,member of the Belgian Federal Council for Science Policy and (co) author of over 500 publications.

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access