Logo - springer
Slogan - springer

Physics - Applied & Technical Physics | Isotope-Based Quantum Information

Isotope-Based Quantum Information

G. Plekhanov, Vladimir

2012, X, 129 p. 62 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.95

(net) price for USA

ISBN 978-3-642-28750-3

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$49.95

(net) price for USA

ISBN 978-3-642-28749-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Introduces the new field of isotope-based quantum information
  • Provides the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope-mixed materials
  • Presents how to design innovative devices with potential application in quantum computing
  • Explains the origin of isotope effects relevant to quantum information and compiles the important concepts
  • Presents the different new models of quantum computers
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

Content Level » Research

Keywords » Classical Information - Concepts of Quantum Computer - Isotop Effects - Nucleus Spin in Semiconductor - Quantum Computation Using Isotope - Mixed Materials of Inorganic - Quantum Information - Semiconductor-based electronics

Related subjects » Applied & Technical Physics - Particle and Nuclear Physics - Signals & Communication - Software Engineering

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Quantum Information Technology, Spintronics.