Logo - springer
Slogan - springer

New & Forthcoming Titles | Tournament Solutions and Majority Voting

Tournament Solutions and Majority Voting

Series: Studies in Economic Theory, Vol. 7

Laslier, J.-Francois

Softcover reprint of the original 1st ed. 1997, XIII, 255 pp. 31 figs., 4 tabs.

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

(net) price for USA

ISBN 978-3-642-64561-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

$129.00
  • About this book

This book is a survey on the problem of choosing from a tournament. It brings together under a unified and self-contained presentation results and concepts from Graph Theory, Choice Theory, Decision Science and Social Choice which were discovered in the last ten years. Classical scoring and ranking methods are introduced, including the Slater orderings, as well as new statistical methods for describing a tournament, graph-theoretical methods based on the covering relation and game-theoretical methods. As an illustration, results are applied to the classical problem of Majority Voting: How to deal with the Condorcet Paradox.

Content Level » Research

Keywords » Entscheidungstheorie - Graphentheorie - Mehrheitswahl - Politikwissenschaft - Social Choise - Spieltheorie - decision theory - game theory - graph theory - majority voting - political science - social choice

Related subjects » Economic Theory - Operations Research & Decision Theory

Table of contents 

Organisation of the Book.- 1 Generalities.- 1.1 Definitions and Notations ..- 1.2 Finite Tournaments.- 1.3 Decomposition.- 1.4 Regularity.- 1.5 Useful Notions about General Binary Relations.- 2 Tournament Solutions.- 2.1 Majority Voting and Tournaments.- 2.2 Solution Concepts.- 2.3 Monotonicity, Strong Superset Property and Independence of Losers.- 2.4 Composition-Consistency and Regularity.- 2.5 Composition-Consistent Hulls.- 3 Scoring and Ranking Methods.- 3.1 Copeland Solution.- 3.2 Iterative Matrix Solutions.- 3.3 Markov Solution.- 3.4 Slater Solution.- 4 Multivariate Descriptions.- 4.1 Complete Euclidean Description.- 4.2 Multidimensional Scaling.- 5 Covering.- 5.1 Covering Relation and Uncovered Set.- 5.2 Iterations of the Uncovered Set.- 5.3 Dutta’s Minimal Covering Set.- 5.4 Weak Covering à la Laffond and Lainé.- 5.5 Weak Covering à la Levchenkov.- 6 Tournament Game.- 6.1 Tournament Game in Pure Strategies.- 6.2 Tournament Game in Mixed Strategies.- 6.3 Properties of the Bipartisan Set.- 6.4 Method of the Minimal Gain.- 6.5 Interpretation of Tournament Games.- 7 The Contestation Process.- 7.1 Banks’ Solution.- 7.2 The Tournament Equilibrium Set.- 8 Tournament Algebras and Binary Trees.- 8.1 Definition of a Tournament Algebra.- 8.2 Binary Trees.- 8.3 An Algebraic Solution: The Top-Cycle.- 8.4 An Algebraic Solution: The Banks’ set.- 8.5 Properties of Algebraic Solutions.- 9 Copeland Value of a Solution.- 9.1 Definition of the Copeland Value.- 9.2 Computation of Some Copeland Values.- 10 From Tournaments to Choice and Voting.- 10.1 Generalized Tournaments.- 10.2 Social Choice.- 10.3 Voting with Mediators.- 10.4 Voting with Agendas.- Annex — Summary Tables.- A.1 Relations between the Main Solutions.- A.2 Properties of the Main Solutions.- A.3 Games and Tournaments Concepts.- A.4 An Example.- Index of Main Notations.- References.

Popular Content within this publication 

 

Articles

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Combinatorics.