Logo - springer
Slogan - springer

New & Forthcoming Titles | Mathematical Modeling in Renal Physiology

Mathematical Modeling in Renal Physiology

Layton, Anita T., Edwards, Aurélie

2014, VIII, 221 p. 60 illus., 4 illus. in color.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-642-27367-4

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-642-27366-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Written by experts in academia
  • Provides the mathematical and biological basis needed to understand transport phenomena in the kidney
  • First book of this kind on the market

This comprehensive and richly illustrated volume provides up-to-date, wide-ranging material on the mathematical modeling of kidney physiology, including clinical data analysis and practice exercises. Basic concepts and modeling techniques introduced in this volume can be applied to other areas (or organs) of physiology.

With the availability of high speed computers and advances in computational techniques, the application of mathematical modeling to biological systems is expanding. The models presented in this book describe the main homeostatic functions performed by the kidney, including blood filtration, excretion of water and salt, maintenance of electrolyte balance, and regulation of blood pressure. Each chapter includes an introduction to the basic relevant physiology, a derivation of the essential conservation equations, and then a discussion of a series of mathematical models, with increasing level of complexity.

This volume will be of interest to biological and mathematical scientists, as well as physiologists and nephrologists, who would like an introduction to mathematical techniques that can be applied to renal transport and function. The material is written for students who have had college-level calculus, but can be used in modeling courses in applied mathematics at all levels through early graduate courses.

Anita T. Layton is the Robert R. and Katherine B. Penn Associate Professor of Mathematics at Duke University.

Aurélie Edwards is director of the Laboratory of Renal Physiology at the Cordeliers Research Center in Paris, in affiliation with the French National Center for Scientific Research (CNRS).

Content Level » Graduate

Keywords » 92C30, 92B99 - biology - differential equations - kidney - mathematical modeling - physiology

Table of contents 

1.Introduction: Basics of Kidney Physiology.- 2.Glomerular Filtration.- 3.Urine Concentration.- 4 Counter-current Exchange Across Vasa Recta.- 5.Tubuloglomerular Feedback.- 6.Electrophysiology of Renal Vascular Smooth Muscle Cells.- 7.Vasomotion and Myogenic Response of the Afferent Arteriole.- 8.Transport Across Tubular Epithelia.- 9.Solutions to Problem Sets.- Index.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Physiological, Cellular and Medical Topics.