Logo - springer
Slogan - springer

New & Forthcoming Titles | Essential Mathematical Biology

Essential Mathematical Biology

Britton, Nicholas

1st ed. 2003. 2nd printing 2003, XV, 335 p. 92 illus.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4471-0049-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-85233-536-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

Essential Mathematical Biology is a self-contained introduction to the fast-growing field of mathematical biology. Written for students with a mathematical background, it sets the subject in its historical context and then guides the reader towards questions of current research interest, providing a comprehensive overview of the field and a solid foundation for interdisciplinary research in the biological sciences.

A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling.

This book will appeal to 3rd and 4th year undergraduate students studying mathematical biology. A background in calculus and differential equations is assumed, although the main results required are collected in the appendices. A dedicated website at www.springer.co.uk/britton/ accompanies the book and provides further exercises, more detailed solutions to exercises in the book, and links to other useful sites.

Content Level » Lower undergraduate

Keywords » Cancer modelling - Mathematical biology - Mathematical modelling - Molecular and cellular biology - Pattern formation - Population dynamics - Population genetics and evolution - biology - genetics

Related subjects » Applications - Life Sciences - Mathematics

Table of contents 

1. Single Species Population Dynamics.- 2. Population Dynamics of Interacting Species.- 3. Infectious Diseases.- 4. Population Genetics and Evolution.- 5. Biological Motion.- 6. Molecular and Cellular Biology.- 7. Pattern Formation.- 8. Tumour Modelling.- Further Reading.- A. Some Techniques for Difference Equations.- A.1 First-order Equations.- A.1.1 Graphical Analysis.- A.1.2 Linearisation.- A.2 Bifurcations and Chaos for First-order Equations.- A.2.1 Saddle-node Bifurcations.- A.2.2 Transcritical Bifurcations.- A.2.3 Pitchfork Bifurcations.- A.2.4 Period-doubling or Flip Bifurcations.- A.3 Systems of Linear Equations: Jury Conditions.- A.4 Systems of Nonlinear Difference Equations.- A.4.1 Linearisation of Systems.- A.4.2 Bifurcation for Systems.- B. Some Techniques for Ordinary Differential Equations.- B.1 First-order Ordinary Differential Equations.- B.1.1 Geometric Analysis.- B.1.2 Integration.- B.1.3 Linearisation.- B.2 Second-order Ordinary Differential Equations.- B.2.1 Geometric Analysis (Phase Plane).- B.2.2 Linearisation.- B.2.3 Poincaré-Bendixson Theory.- B.3 Some Results and Techniques for rath Order Systems.- B.3.1 Linearisation.- B.3.2 Lyapunov Functions.- B.3.3 Some Miscellaneous Facts.- B.4 Bifurcation Theory for Ordinary Differential Equations.- B.4.1 Bifurcations with Eigenvalue Zero.- B.4.2 Hopf Bifurcations.- C. Some Techniques for Partial Differential Equations.- C.1 First-order Partial Differential Equations and Characteristics.- C.2 Some Results and Techniques for the Diffusion Equation.- C.2.1 The Fundamental Solution.- C.2.2 Connection with Probabilities.- C.2.3 Other Coordinate Systems.- C.3 Some Spectral Theory for Laplace’s Equation.- C.4 Separation of Variables in Partial Differential Equations.- C.5 Systems of Diffusion Equations with Linear Kinetics.- C.6 Separating the Spatial Variables from Each Other.- D. Non-negative Matrices.- D.1 Perron-Frobenius Theory.- E. Hints for Exercises.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical and Computational Biology.

Additional information