Logo - springer
Slogan - springer

New & Forthcoming Titles | Quantum Theory for Mathematicians

Quantum Theory for Mathematicians

Series: Graduate Texts in Mathematics, Vol. 267

Hall, Brian C.

2013, XVI, 554 p. 30 illus., 2 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-1-4614-7116-5

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.95

(net) price for USA

ISBN 978-1-4614-7115-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Explains physical ideas in the language of mathematics
  • Provides a self-contained treatment of the necessary mathematics, including spectral theory and Lie theory
  • Contains many exercises that will appeal to graduate students

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics.

The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces.  The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Content Level » Graduate

Keywords » Hilbert space - Lie groups - Stone-von Neumann theorem - WKB approximation - geometric quantization - quantum mechanics - spectral theorem - unbounded operators

Related subjects » Algebra - Analysis - Quantum Physics - Theoretical, Mathematical & Computational Physics

Table of contents 

1 The Experimental Origins of Quantum Mechanics.- 2 A First Approach to Classical Mechanics.- 3 A First Approach to Quantum Mechanics.- 4 The Free Schrödinger Equation.- 5 A Particle in a Square Well.- 6 Perspectives on the Spectral Theorem.- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements.- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs.- 9 Unbounded Self-Adjoint Operators.- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators.- 11 The Harmonic Oscillator.- 12 The Uncertainty Principle.- 13 Quantization Schemes for Euclidean Space.- 14 The Stone–von Neumann Theorem.- 15 The WKB Approximation.- 16 Lie Groups, Lie Algebras, and Representations.- 17 Angular Momentum and Spin.- 18 Radial Potentials and the Hydrogen Atom.- 19 Systems and Subsystems, Multiple Particles.- V Advanced Topics in Classical and Quantum Mechanics.- 20 The Path-Integral Formulation of Quantum Mechanics.- 21 Hamiltonian Mechanics on Manifolds.- 22 Geometric Quantization on Euclidean Space.- 23 Geometric Quantization on Manifolds.- A Review of Basic Material.- References.​- Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical Physics.