Logo - springer
Slogan - springer

New & Forthcoming Titles | Single-molecule Studies of Proteins

Single-molecule Studies of Proteins

Oberhauser, Andres F. (Ed.)

2013, XIV, 274 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-1-4614-4921-8

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-4614-4920-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-4899-9112-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Explores sophisticated advances in powerful new analytical, computational, and imaging methods
  • Cover ways in which single-molecule methods can be applied to studying protein function
  • Lays the foundation for additional research to monitor processes within living cells at high resolution and define the complex networks of interactions which regulate cellular function

Single-molecule measurement techniques are providing fundamental information on the structure and function of biomolecules and are becoming an indispensable tool to understand how proteins work. During the last two decades, this field has grown at an almost exponential rate in terms of biological and biophysical applications. Single-molecule techniques have opened new fields of science that are at the crossroads of several disciplines such as biology, physics, chemistry, material science and computer science. These methods are often the approach of choice to clarify and better understand the structure and function of single proteins. This volume consists of up-to-date and comprehensive reviews of important and timely applications of different biological problems tackled by single-molecule methods; it also covers basic principles of operation, experiment and theory.

In Single-molecule Studies of Proteins, expert researchers discuss the successful application of single-molecule techniques to a wide range of biological events, such as the imaging and mapping of cell surface receptors, the analysis of the unfolding and folding pathways of single proteins, the analysis interaction forces between biomolecules, the study of enzyme catalysis or the visualization of molecular motors in action. The chapters are aimed at established investigators and post-doctoral researchers in the life sciences wanting to pursue research in the various areas in which single-molecule approaches are important; this volume also remains accessible to advanced graduate students seeking similar research goals.

Content Level » Professional/practitioner

Related subjects » Biochemistry & Biophysics - Biophysics & Biological Physics

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Protein Science.