Logo - springer
Slogan - springer

New & Forthcoming Titles | Combinatorial Number Theory and Additive Group Theory

Combinatorial Number Theory and Additive Group Theory

Geroldinger, Alfred, Ruzsa, Imre


A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-7643-8962-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-7643-8961-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

This book collects the material delivered in the 2008 edition of the DocCourse in Combinatorics and Geometry which was devoted to the topic of additive combinatorics. The first two parts, which form the bulk of the volume, contain the two main advanced courses, Additive Group Theory and Non-Unique Factorizations by Alfred Geroldinger, and Sumsets and Structure by Imre Z. Ruzsa.

The first part centers on the interaction between non-unique factorization theory and additive group theory. The main objective of factorization theory is a systematic treatment of phenomena related to the non-uniqueness of factorizations in monoids and domains. This part introduces basic concepts of factorization theory such as sets of lengths, and outlines the translation of arithmetical questions in Krull monoids into combinatorial questions on zero-sum sequences over the class group. Using methods from additive group theory such as the theorems of Kneser and of Kemperman-Scherk, classical zero-sum constants are studied, including the Davenport constant and the Erdös-Ginzburg-Ziv constant. Finally these results are applied again to the starting arithmetical problems.

The second part is a course on the basics of combinatorial number theory (or additive combinatorics): cardinality inequalities (Plünnecke’s graph theoretical method), Freiman’s theorem on the structure of sets with a small sumset, inequalities for the Schnirelmann and asymptotic density of sumsets, analogous results for the measure of sumsets of reals, the connection with the Bohr topology.

The third part of the volume collects some of the seminars which accompanied the main courses. It contains contributions by C. Elsholtz, G. Freiman, Y. O. Hamidoune, N. Hegyvari, G. Karolyi, M. Nathanson, J. Solymosi and Y. Stanchescu.

Content Level » Graduate

Keywords » Graph - Graph theory - Group theory - additive group theory - combinatorial number theory - factorization - number theory - sumsets

Table of contents / Preface 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Discrete Mathematics.