Logo - springer
Slogan - springer

New & Forthcoming Titles | Evolution of Biological Systems in Random Media: Limit Theorems and Stability

Evolution of Biological Systems in Random Media: Limit Theorems and Stability

Swishchuk, Anatoly, Jianhong Wu

2003, XX, 218 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$109.00

(net) price for USA

ISBN 978-94-017-1506-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$139.00

(net) price for USA

ISBN 978-1-4020-1554-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$139.00

(net) price for USA

ISBN 978-90-481-6398-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

The book is devoted to the study of limit theorems and stability of evolving biologieal systems of "particles" in random environment. Here the term "particle" is used broadly to include moleculas in the infected individuals considered in epidemie models, species in logistie growth models, age classes of population in demographics models, to name a few. The evolution of these biological systems is usually described by difference or differential equations in a given space X of the following type and dxt/dt = g(Xt, y), here, the vector x describes the state of the considered system, 9 specifies how the system's states are evolved in time (discrete or continuous), and the parameter y describes the change ofthe environment. For example, in the discrete-time logistic growth model or the continuous-time logistic growth model dNt/dt = r(y)Nt(l-Nt/K(y)), N or Nt is the population of the species at time n or t, r(y) is the per capita n birth rate, and K(y) is the carrying capacity of the environment, we naturally have X = R, X == Nn(X == Nt), g(x, y) = r(y)x(l-xl K(y)) , xE X. Note that n t for a predator-prey model and for some epidemie models, we will have that X = 2 3 R and X = R , respectively. In th case of logistic growth models, parameters r(y) and K(y) normaIly depend on some random variable y.

Content Level » Research

Keywords » Branching process - Demography - Markov chain - Markov process - Markov renewal process - Martingale - diffusion process - ergodicity

Related subjects » Human Genetics - Population Economics - Probability Theory and Stochastic Processes - Public Health

Table of contents 

Preface. List of Notations. 1: Random Media. 1.1. Markov Chains. 1.2. Ergodicity and Reducibility of Markov Chains. 1.3. Markov Renewal Processes. 1.4. Semi-Markov Processes. 1.5. Jump Markov Processes. 1.6. Wiener Processes and Diffusion Processes. 1.7. Martingales. 1.8. Semigroups of Operators and their Generators. 1.9. Martingale Characterization of Markov and Semi-Markov Processes. 1.10. General Representation and Measurability of Biological Systems in Random Media. 2: Limit Theorems for Difference Equations in Random Media. 2.1. Limit Theorems for Random Evolutions. 2.2. Averaging of Difference Equations in Random Media. 2.3. Diffusion Approximation of Difference Equations in Random Media. 2.4. Normal Deviations of Difference Equations in Random Media. 2.5. Merging of Difference Equations in Random Media. 2.6. Stability of Difference Equations in Random Media. 2.7. Limit Theorems for Vector Difference Equations in Random Media. 3: Epidemic Models. 3.1. Deterministic Epidemic Models. 3.2. Stochastic Epidemic Model (Epidemic Model in Random Media). 3.3. Averaging of Epidemic Model in Random Media. 3.4. Merging of Epidemic Models in Random Media. 3.5. Diffusion Approximation of Epidemic Models in Random Media. 3.6. Normal Deviations of Epidemic Model in Random Media. 3.7. Stochastic Stability of Epidemic Model. 4: Genetic Selection Models. 4.1. Deterministic Genetic Selection Models. 4.2. Stochastic Genetic Selection Model (Genetic Selection Model in Random Media). 4.3. Averaging of Slow Genetic Selection Model in Random Media. 4.4. Merging of Slow Genetic Selection Model in Random Media. 4.5. Diffusion Approximation of Slow Genetic Selection Model in Random Media. 4.6. Normal Deviations of Slow Genetic Selection Model in Random Media. 4.7. Stochastic Stability of Slow Genetic Selection Model. 5: Branching Models. 5.1. Branching Models with Deterministic Generating Function. 5.2. Branching Models in Random Media. 5.3. Averaging of Branching Models in Random Media. 5.4. Merging of Branching Model in Random Media. 5.5. Diffusion Approximation of Branching Process in Random Media. 5.6. Normal Deviations of Branching Process in Random Media. 5.7. Stochastic Stability of Branching Model in Averaging and Diffusion Approximation Schemes. 6: Demographic Models. 6.1. Deterministic Demographic Model. 6.2. Stochastic Demographic Models (Demographic Models in Random Media). 6.3. Averaging of Demographic Models in Random Media. 6.4. Merging of Demographic Model. 6.5. Diffusion Approximation of Demographic Model. 6.6. Normal Deviations of Demographic Models in Random Media. 6.7. Stochastic Stability of Demographic Model in Averaging and Diffusion Approximation Schemes. 7: Logistic Growth Models. 7.1. Deterministic Logistic Growth Model. 7.2. Stochastic Logistic Growth Model (Logistic Growth Model in Random Media). 7.3. Averaging of Logistic Growth Model in Random Media. 7.4. Merging of Logistic Growth Model in Random Media. 7.5. Diffusion Approximation of Logistic Growth Model in Random Media. 7.6. Normal De

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical and Computational Biology.