Logo - springer
Slogan - springer

Medicine - Radiology | Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology

Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology

Eaton, Sandra S., Eaton, Gareth R., Berliner, Lawrence (Eds.)

2005, XXIV, 522 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$379.00

(net) price for USA

ISBN 978-0-387-26741-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$479.00

(net) price for USA

ISBN 978-0-306-48506-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

Also available as a set for $319.00


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$479.00

(net) price for USA

ISBN 978-1-4419-3456-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Biomedical EPR โ€“ Part A focuses on applications of EPR spectroscopy in the areas of free radicals, metals, medicine, and physiology. The book celebrates the 70th birthday of Prof. James S. Hyde, Medical College of Wisconsin, and his contributions to this field. Chapters are written to provide introductory material for new-comers to the field which lead into up-to-date reviews that provide perspective on the wide range of questions that can be addressed by EPR.

Key Features:
Free Radicals in Medicine

Radicals in vivo and in Model Systems, and their Study by Spin Trapping

In vivo EPR, including Oximetry and Imaging

Time Domain EPR at Radio Frequencies

EPR of Copper Complexes: Motion and Frequency Dependence

Time Domain EPR and Electron Spin Echo Envelope Modulation

About the Editors:

Prof. Sandra S. Eaton is John Evans Professor in the Department of Chemistry and Biochemistry at the University of Denver. Her research interests include distance measurements in proteins, EPR of metal ions in biological systems, electron spin relaxation times, and EPR instrumentation. The Eatons co-organize an annual EPR Symposium in Denver.

Prof. Gareth R. Eaton is John Evans Professor in the Department of Chemistry and Biochemistry at the University of Denver. His research interests include EPR instrumentation, distance measurements in proteins, EPR of metal ions in biological systems, and electron spin relaxation times.

Dr. Lawrence J. Berliner is currently Professor and Chair of the Department of Chemistry and Biochemistry at the University of Denver after retiring from Ohio State University, where he spent a 32-year career in the area of biological magnetic resonance (EPR and NMR). He is the Series Editor for Biological Magnetic Resonance, which he launched in 1979.

Content Level » Professional/practitioner

Keywords » ENDOR - ESR - electron spin - electron spin echo - imaging - physiology - temperature

Related subjects » Atomic, Molecular, Optical & Plasma Physics - Biochemistry & Biophysics - Biophysics & Biological Physics - Physical Chemistry - Radiology

Table of contents 

Section I. Instrumentation and Methodology Chapter 1 Saturation Recovery EPR; Sandra S. Eaton and Gareth R. Eaton 1. Motivation 2. Brief History 3. Information Content of Saturation Recovery Curves 4. Practical Aspects of Experimental Methodology 5. Applications 6. Prognosis 7. References Chapter 2 Loop-Gap Resonators; George A. Rinard and Gareth R. Eaton 1. Introduction 2. History 3. Why should one use loop-gap resonators? 4. Basics 5. Topologies of loop gap resonators 6. Coupling to Resonators 7. Design equations 8. Magnetic Field Modulation 9. LGR for Time Domain EPR 10. Selection of the Q of a LGR 11. Measuring B1 in the LGR 12. Variable Temperature 13. Mechanical Considerations 14. Commercial Resonators 15. Applications of Lumped-Circuit Resonators 16. Further information 17. References Chapter 3 EPR Interfaced To Rapid Mixing; Charles P. Scholes 1. Introduction 2. The Loop Gap Resonator Based Stopped-Flow System 3. Dielectric Resonator-based Stopped-Flow EPR 4. Applications of Stopped-Flow and Flow EPR to Naturally Occurring Transient Radicals 5. Future Developments and Applications of Flow and Stopped-Flow EPR 6. References Chapter 4 Application of Angle-Selected Electron Nuclear Double Resonance to Characterize Structured Solvent in Small Molecules and Macromolecules; Devkumar Mustafi and Marvin W. Makinen 1. Introduction 2. ENDOR Assignment of Molecular Structure and Conformation with VO2+ and Nitroxyl Spin-Labels 3. ENDOR Characterization of Structured Solvent in Small Molecule Complexes and in Proteins 4. Future Perspectives and Concluding Remarks 5. References Chapter 5 Solution-ENDOR of Some Biologically Interesting Radical Ions; Fabian Gerson and Georg Gescheidt 1. Solution ENDOR Spectroscopy 2. Quinones 3. Porphyrinoids 4. References Chapter 6 Electron-Electron Double Resonance; Lowell D. Kispert 1. Introduction 2. Instrumental Techniques 3. Dynamics of Biomolecules in Liquid Crystals, Glassy Solids, Polymers and Crystals 4. Practical Aspects of Measurements 5. References Chapter 7 Digital Detection by Time-Locked Sampling in EPR; James S. Hyde, Theodore G. Camenisch, Joseph J. Ratke, Robert A. Strangeway, Wojciech Froncisz 1. Introduction 2. Time Locking and Superheterodyne Detection โ€“ EPR Instrument Design Background 3. Time-Locked Subsampling Detection for CW EPR 4. Pulse Saturation Recovery Using Time-Locked Subsampling 5. Selected Engineering Considerations 6. Conclusion 7. References Chapter 8 Measurement of Distances Between Electron Spins Using Pulsed EPR; Sandra S. Eaton and Gareth R. Eaton 1. Introduction 2. Fundamental Principles of Interaction between Electron Spins 3. Distance between Two Slowly Relaxing Centers 4. Distance between a Slowly Relaxing Center and a Rapidly-Relaxing Center 5. Some Practical Considerations 6. Recent Examples for Distances between Two Slowly-Relaxing Radicals 7. Recent Examples for Distances between a Rapidly-Relaxing and a Slowly-Relaxing Spin 8. Prognosis 9. References Section II. Motion, Proteins, and Membranes Chapter 9 ESR and Molecular Dynamics; Jack H. Freed 1. Motional Narrowing and Organic Radicals 2. Double Resonance and Molecular Dynamics 3. Slow Motional ESR and Molecular Dynamics 4. High Field ESR and Molecular Dynamics 5. Spin-Echoes and

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Imaging / Radiology.