Logo - springer
Slogan - springer

Mathematics - Probability Theory and Stochastic Processes | Séminaire de Probabilités XXXVII

Séminaire de Probabilités XXXVII

Azéma, J., Émery, M., Ledoux, M., Yor, M. (Eds.)

2003, XIV, 454 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


ISBN 978-3-540-40004-2

digitally watermarked, no DRM

The eBook version of this title will be available soon

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-20520-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

The 37th Séminaire de Probabilités contains A. Lejay's advanced course which is a pedagogical introduction to works by T. Lyons and others on stochastic integrals and SDEs driven by deterministic rough paths. The rest of the volume consists of various articles on topics familiar to regular readers of the Séminaires, including Brownian motion, random environment or scenery, PDEs and SDEs, random matrices and financial random processes.

Content Level » Research

Keywords » Black-Scholes - Brownian motion - Gaussian measure - Martingale - diffusion process - local martingale - local time - probability - rough path - stochastic process

Related subjects » Probability Theory and Stochastic Processes

Table of contents 

Preface.- F.B. Knight: An Impression of P.A. Meyer as Deus Ex Machina.- Advanced course: A. Lejay: An introduction to rough paths.- Talks: D. Bakry, O. Mazet : Characterization of Markov semigroups on R associated to some families of orthogonal polynomials.- P. Cheridito: Representations of Gaussian measures that are equivalent to Wiener measure.- L. Galtchouk: On the reduction of a multidimensional continuous martingale to a Brownian motion.- I. Meilijson: The time to a given drawdown in Brownian motion.- A. Lachal: Application de la théorie des excursions à l'intégrale du mouvement Brownien.- T. Mountford: Brownian sheet local time and bubbles.- K. Hirano: On the maximum of a diffusion process in a random Lévy environment.- D. Khoshnevisan: The codimension of the zeros of a stable process in random scenery.- J. Brossard: Deux notions équivalentes d'unicité en loi pour les équations différentielles stochastiques.- Z. Brzezniak, A. Carroll : Approximation of the Wong-Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces.- F. Delarue: Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme.- G. Miermont, J. Schweinsberg: Self-similar fragmentations and stable subordinators.- M. Ledoux: A remark on hypercontractivity and tail inequalities for the largest eigenvalues of random matrices.- Ya. Doumerc: A note on representations of eigenvalues of classical Gaussian matrices.- E. Strasser: Necessary and sufficient conditions for the supermartingale property of a stochastic integral with respect to a local martingale.- M. Rasonyi: A remark on the superhedging theorem under transaction costs.- I. Rosu, D. Stroock: On the derivation of the Black-Scholes formula.- P. del Moral, A. Doucet: On a class of genealogical and interacting Metropolis models.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.

Additional information