Logo - springer
Slogan - springer

Mathematics - Probability Theory and Stochastic Processes | The Methods of Distances in the Theory of Probability and Statistics

The Methods of Distances in the Theory of Probability and Statistics

Rachev, S.T., Klebanov, L., Stoyanov, S.V., Fabozzi, F.

2013, XVI, 619 p. 17 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-1-4614-4869-3

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-1-4614-4868-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Contains both theory and applications
  • Well known authors
  • New applications to tomography, queuing systems and business

This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to  the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics.

After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases.

      Svetlozar T.  Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook  and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore).  Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

 

Content Level » Graduate

Keywords » Monge-Kantorovich mass transference problem - Probability distances - Statistical parameter estimation - Theory of Probability Distances

Related subjects » Analysis - Probability Theory and Stochastic Processes - Statistical Theory and Methods

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.