Logo - springer
Slogan - springer

Mathematics - Probability Theory and Stochastic Processes | Fundamentals of Mathematical Statistics - Statistical Inference

Fundamentals of Mathematical Statistics

Statistical Inference

Nguyen, Hung T., Rogers, Gerald S.

Softcover reprint of the original 1st ed. 1989, XI, 422 pp.

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

(net) price for USA

ISBN 978-1-4613-8916-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

$99.00
This is a text (divided into two volumes) for a two semester course in Mathematical Statistics at the Senior/Graduate level. The two main pedagogical aspects in these Volumes are: (i) the material is designed in lessons (each for a 50 minute class) with complementary exercises and home work. (ii) although the material is traditional, great care is exerted upon self-contained, rigorous and complete presentations. An elementary introduction to characteristic functions and probability measures and intergration, but not general measure theory in Volume I, allows a complete proof of some central limit theorems and a rigorous treatment of asymptotic of statistical inference. But students need to be familiar only with such things as Jacobians and eigenvalues of matrices. Volume II: Statistical Inference is designed for the second semester and contains a rigorous introduction to Mathematical Statistics, from random samples to asymptotic theory of statistical inference.

Content Level » Research

Related subjects » Probability Theory and Stochastic Processes - Statistical Theory and Methods

Table of contents 

IV: Sampling and distributions.- Overview.- Lesson 1 Sampling and statistics.- 2 Transformations of real random variables.- 3 Transformations of random vectors.- 4 Sampling distributions in normal populations-I.- 5 Sampling distributions in normal populations-II.- 6 Order statistics.- 7 Sufficient statistics-I.- 8 Sufficient statistics-II.- 9 Complete statistics.- 10 Exponential families-I.- 11 Exponential families-II.- V: Statistical estimation.- Overview.- Lesson 1 Point estimation of parameters.- 2 Conditional expectation.- 3 Uniformly minimum variance unbiased estimators.- 4 Efficient estimators.- 5 Unbiased estimation: the vector case.- 6 Two methods of point estimation.- 7 Maximum likelihood estimation.- 8 Confidence interval estimation-I.- 9 Confidence interval estimation-II.- 10 Consistent estimators.- 11 Consistency of maximum likelihood estimators.- 12 Asymptotic normality.- 13 Asymptotic normality of maximum likelihood estimators.- 14 Asymptotic efficiency and large sample confidence intervals.- VI: Testing hypotheses.- Overview.- Lesson 1 Neyman-Pearson theory-I.- 2 Neyman-Pearson theory-II.- 3 Testing with monotone likelihood ratios.- 4 Testing when the support contains parameters.- 5 Unbiased tests.- 6 Quadratic forms in normal random variables.- 7 Likelihood ratio tests-I.- 8 One-way analysis of variance.- 9 Likelihood ratio tests-II.- 10 LRT-asymptotic distributions.- 11 Summary of tests for normal populations.- 12 Tests for two-by-two tables.- VII: Special topics.- Overview.- Lesson 1 Minimax and Bayes estimators-I.- 2 Minimax and Bayes estimators-II.- 3 Equivariant estimators.- 4 Simple linear regression-I.- 5 Simple linear regression-II.- 6 Sufficient statistics and uniformly most powerful tests.- 7 Sequential probability ratio tests.- 8 A test by Mann, Whitney, Wilcoxon.- 9 Tests for paired comparisons.- 10 Tests of Kolmogorov, Smirnov type.- 11 Categorical data.- Tables.- References.

Popular Content within this publication 

 

Articles

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.