Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-0-387-88698-5
digitally watermarked, no DRM
Included Format: PDF
download immediately after purchase
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-0-387-88697-8
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
From the reviews:
“The book…gives a very broad and practical overview of the most common models for time series analysis in the time domain and in the frequency domain, with emphasis on how to implement them with base R and existing R packages such as Rnlme, MASS, tseries, fracdiff, mvtnorm, vars, and sspir. The authors explain the models by first giving a basic theoretical introduction followed by simulation of data from a particular model and fitting the latter to the simulated data to recover the parameters. After that, they fit the class of models to either environmental, finance, economics, or physics data. There are many applications to climate change and oceanography. The R programs for the simulations are given even if there are R functions that would do the simulation. All examples given can be reproduced by the reader using the code provided…in all chapters. Exercises at the end of each chapter are interesting, involving simulation, estimation, description, graphical analysis, and some theory. Data sets used throughout the book are available in a web site or come with base R or the R packages used. The book is a great guide to those wishing to get a basic introduction to modern time series modeling in practice, and in a short amount of time. …” (Journal of Statistical Software, January 2010, Vol. 32, Book Review 4)
“Later year undergraduates, beginning graduate students, and researchers and graduate students in any discipline needing to explore and analyse time series data. This very readable text covers a wide range of time series topics, always however within a theoretical framework that makes normality assumptions. The range of models that are discussed is unusually wide for an introductory text. … The mathematical theory is remarkably complete … . This text is recommended for its wide-ranging and insightful coverage of time series theory and practice.” (John H. Maindonald, International Statistical Review, Vol. 78 (3), 2010)
“The authors present a textbook for students and applied researchers for time series analysis and linear regression analysis using R as the programming and command language. … The book is written for students with knowledge of a first-year university statistics course in New-Zealand and Australia, but it also might serve as a useful tools for applied researchers interested in empirical procedures and applications which are not menu driven as it is the case for most econometric software packages nowadays.” (Herbert S. Buscher, Zentralblatt MATH, Vol. 1179, 2010)
Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.