Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-0-387-79054-1
digitally watermarked, no DRM
Included Format: PDF
download immediately after purchase
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-0-387-79053-4
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
R is an Open Source implementation of the S language. It works on multiple computing platforms and can be freely downloaded. R is now in widespread use for teaching at many levels as well as for practical data analysis and methodological development.
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. A supplementary R package can be downloaded and contains the data sets.
The statistical methodology includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one- and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last six chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, survival analysis, Poisson regression, and nonlinear regression.
In the second edition, the text and code have been updated to R version 2.6.2. The last two methodological chapters are new, as is a chapter on advanced data handling. The introductory chapter has been extended and reorganized as two chapters. Exercises have been revised and answers are now provided in an Appendix.
Peter Dalgaard is associate professor at the Department of Biostatistics at the University of Copenhagen and has extensive experience in teaching within the PhD curriculum at the Faculty of Health Sciences. He has been a member of the R Core Team since 1997.
Content Level » Professional/practitioner
Keywords » ANOVA - Analysis - Analysis of variance - Curve fitting - Descriptive statistics - Fitting - Open Source - Regression analysis - Survival analysis - data analysis - linear regression - statistics
Related subjects » Computational Statistics - Probability Theory and Stochastic Processes - Systems Biology and Bioinformatics
Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.