Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-1-4614-7717-4
digitally watermarked, no DRM
Included Format: PDF and EPUB
download immediately after purchase
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-1-4614-7716-7
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
By focusing on quadratic numbers, this advanced undergraduate or master’s level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group. The book concludes with two topics particular to quadratic fields: continued fractions and quadratic forms. The treatment of quadratic forms is somewhat more advanced than usual, with an emphasis on their connection with ideal classes and a discussion of Bhargava cubes.
The numerous exercises in the text offer the reader hands-on computational experience with elements and ideals in quadratic number fields. The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders. Prerequisites include elementary number theory and a basic familiarity with ring theory.
Content Level » Graduate
Keywords » ideal class group - number theory - quadratic forms - ring theory
Related subjects » Algebra - Number Theory and Discrete Mathematics
Get alerted on new Springer publications in the subject area of Number Theory.