Logo - springer
Slogan - springer

Mathematics - Number Theory and Discrete Mathematics | Solving the Pell Equation

Solving the Pell Equation

Jacobson, Michael, Williams, Hugh

2009

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.95

(net) price for USA

ISBN 978-0-387-84923-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.95

(net) price for USA

ISBN 978-0-387-84922-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.95

(net) price for USA

ISBN 978-1-4419-2747-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Describes modern (and surprising) applications to cryptography
  • Includes the most recent advances, with a deeper approach than any other book
  • Hugh Williams is Canada’s most famous computational number theorist who has published close to 200 articles in top journals
  • Michael Jacobson is the known expert on subexponential methods, and a former student of Hugh Williams
  • Both authors are recognized as outstanding expositors

Pell's equation is a very simple, yet fundamental Diophantine equation which is believed to have been known to mathematicians for over 2000 years. Because of its popularity, the Pell equation is often discussed in textbooks and recreational books concerning elementary number theory, but usually not in much depth. This book provides a modern and deeper approach to the problem of solving the Pell equation. The main component of this will be computational techniques, but in the process of deriving these it will be necessary to develop the corresponding theory.

 

One objective of this book is to provide a less intimidating introduction for senior undergraduates and others with the same level of preparedness to the delights of algebraic number theory through the medium of a mathematical object that has fascinated people since the time of Archimedes. To achieve this, this work is made accessible to anyone with some knowledge of elementary number theory and abstract algebra. Many references and notes are provided for those who wish to follow up on various topics, and the authors also describe some rather surprising applications to cryptography.

 

The intended audience is number theorists, both professional and amateur, and students, but we wish to emphasize that this is not intended to be a textbook; its focus is much too narrow for that. It could, however be used as supplementary reading for students enrolled in a second course in number theory.

Content Level » Professional/practitioner

Keywords » algebra - algebraic number theory - cryptography - diophantine equation - number theory

Related subjects » Environmental Toxicology - Number Theory and Discrete Mathematics

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Number Theory.