Logo - springer
Slogan - springer

Mathematics - Geometry & Topology | Lectures on Hyperbolic Geometry

Lectures on Hyperbolic Geometry

Series: Universitext

Benedetti, Riccardo, Petronio, Carlo

1992, XIV, 332 p. 175 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.99

(net) price for USA

ISBN 978-3-642-58158-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$59.95

(net) price for USA

ISBN 978-3-540-55534-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this textbook

In recent years hyperbolic geometry has been the object and the preparation for extensive study that has produced important and often amazing results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it reaches recent developments of the theory, the book is mainly addressed to graduate-level students approaching research, but it will also be a helpful and ready-to-use tool to the mature researcher. After collecting some classical material about the geometry of the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (of which a complete proof is given following Gromov and Thurston) and Margulis' lemma. These results form the basis for the study of the space of the hyperbolic manifolds in all dimensions (Chabauty and geometric topology); a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory. A large part is devoted to the three-dimensional case: a complete and elementary proof of the hyperbolic surgery theorem is given based on the possibility of representing three manifolds as glued ideal tetrahedra. The last chapter deals with some related ideas and generalizations (bounded cohomology, flat fiber bundles, amenable groups). This is the first book to collect this material together from numerous scattered sources to give a detailed presentation at a unified level accessible to novice readers.

Content Level » Research

Keywords » Cohomology - Flat Fiber Bundles - Geometry of Manifolds - Hyperbolic Geometry - manifold

Related subjects » Geometry & Topology

Table of contents 

A. Hyperbolic Space.- B. Hyperbolic Manifolds and the Compact Two-dimensional Case.- C. The Rigidity Theorem (Compact Case).- D. Margulis’ Lemma and its Applications.- E. The Space of Hyperbolic Manifolds and the Volume Function.- F. Bounded Cohomology, a Rough Outline.- Notation Index.- References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Differential Geometry.