Logo - springer
Slogan - springer

Mathematics - Geometry & Topology | An Introduction to Knot Theory

An Introduction to Knot Theory

Series: Graduate Texts in Mathematics, Vol. 175

Lickorish, W.B.Raymond

1997, X, 204 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.99

(net) price for USA

ISBN 978-1-4612-0691-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.95

(net) price for USA

ISBN 978-0-387-98254-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.95

(net) price for USA

ISBN 978-1-4612-6869-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This account is an introduction to mathematical knot theory, the theory of knots and links of simple closed curves in three-dimensional space. Knots can be studied at many levels and from many points of view. They can be admired as artifacts of the decorative arts and crafts, or viewed as accessible intimations of a geometrical sophistication that may never be attained. The study of knots can be given some motivation in terms of applications in molecular biology or by reference to paral­ lels in equilibrium statistical mechanics or quantum field theory. Here, however, knot theory is considered as part of geometric topology. Motivation for such a topological study of knots is meant to come from a curiosity to know how the ge­ ometry of three-dimensional space can be explored by knotting phenomena using precise mathematics. The aim will be to find invariants that distinguish knots, to investigate geometric properties of knots and to see something of the way they interact with more adventurous three-dimensional topology. The book is based on an expanded version of notes for a course for recent graduates in mathematics given at the University of Cambridge; it is intended for others with a similar level of mathematical understanding. In particular, a knowledge of the very basic ideas of the fundamental group and of a simple homology theory is assumed; it is, after all, more important to know about those topics than about the intricacies of knot theory.

Content Level » Graduate

Keywords » Knot theory - Signatur - manifold - quantum invariant - topology

Related subjects » Algebra - Geometry & Topology - Theoretical, Mathematical & Computational Physics

Table of contents 

1. A Beginning for Knot Theory.- Exercises.- 2. Seifert Surfaces and Knot Factorisation.- Exercises.- 3. The Jones Polynomial.- Exercises.- 4. Geometry of Alternating Links.- Exercises.- 5. The Jones Polynomial of an Alternating Link.- Exercises.- 6. The Alexander Polynomial.- Exercises.- 7. Covering Spaces.- Exercises.- 8. The Conway Polynomial, Signatures and Slice Knots.- Exercises.- 9. Cyclic Branched Covers and the Goeritz Matrix.- Exercises.- 10. The Arf Invariant and the Jones Polynomia.- Exercises.- 11. The Fundamental Group.- Exercises.- 12. Obtaining 3-Manifolds by Surgery on S3.- Exercises.- 13. 3-Manifold Invariants From The Jones Polynomial.- Exercises.- 14. Methods for Calculating Quantum Invariants.- Exercises.- 15. Generalisations of the Jones Polynomial.- Exercises.- 16. Exploring the HOMFLY and Kauffman Polynomials.- Exercises.- References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Manifolds and Cell Complexes (incl. Diff. Topology).