Logo - springer
Slogan - springer

Mathematics - Geometry & Topology | Manifolds, Tensor Analysis, and Applications

Manifolds, Tensor Analysis, and Applications

Abraham, Ralph, Marsden, Jerrold E., Ratiu, Tudor

Originally published by Addison-Wesley Publishing Company, 1983

2nd ed. 1988, XI, 656 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$99.00

(net) price for USA

ISBN 978-1-4612-1029-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$134.00

(net) price for USA

ISBN 978-0-387-96790-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$134.00

(net) price for USA

ISBN 978-1-4612-6990-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this textbook

The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me­ chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

Content Level » Research

Keywords » Derivative - Electromagnetism - Hodge star operator - Implicit function - Riemannian geometry - calculus - compactness - exterior derivative - manifold

Related subjects » Analysis - Applications - Geometry & Topology - Mathematics - Theoretical, Mathematical & Computational Physics

Table of contents 

1 Topology.- 1.1 Topological Spaces.- 1.2 Metric Spaces.- 1.3 Continuity.- 1.4 Subspaces, Products, and Quotients.- 1.5 Compactness.- 1.6 Connectedness.- 1.7 Baire Spaces.- 2 Banach Spaces and Differential Calculus.- 2.1 Banach Spaces.- 2.2 Linear and Multilinear Mappings.- 2.3 The Derivative.- 2.4 Properties of the Derivative.- 2.5 The Inverse and Implicit Function Theorems.- 3 Manifolds and Vector Bundles.- 3.1 Manifolds.- 3.2 Submanifolds, Products, and Mappings.- 3.3 The Tangent Bundle.- 3.4 Vector Bundles.- 3.5 Submersions, Immersions and Transversality.- 4 Vector Fields and Dynamical Systems.- 4.1 Vector Fields and Flows.- 4.2 Vector Fields as Differential Operators.- 4.3 An Introduction to Dynamical Systems.- 4.4 Frobenius’ Theorem and Foliations.- 5 Tensors.- 5.1 Tensors in Linear Spaces.- 5.2 Tensor Bundles and Tensor Fields.- 5.3 The Lie Derivative: Algebraic Approach.- 5.4 The Lie Derivative: Dynamic Approach.- 5.5 Partitions of Unity.- 6 Differential Forms.- 6. I Exterior Algebra.- 6.2 Determinants, Volumes, and the Hodge Star Operator.- 6.3 Differential Forms.- 6.4 The Exterior Derivative, Interior Product, and Lie Derivative.- 6.5 Orientation, Volume Elements, and the Codifferential.- 7 Integration on Manifolds.- 7.1 The Definition of the Integral.- 7.2 Stokes’ Theorem.- 7.3 The Classical Theorems of Green, Gauss, and Stokes.- 7.4 Induced Flows on Function Spaces and Ergodicity.- 7.5 Introduction to Hodge-deRham Theory and Topological Applications of Differential Forms.- 8 Applications.- 8.1 Hamiltonian Mechanics.- 8.2 Fluid Mechanics.- 8.3 Electromagnetism.- 8.3 The Lie-Poisson Bracket in Continuum Mechanics and Plasma Physics.- 8.4 Constraints and Control.- References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Manifolds and Cell Complexes (incl. Diff. Topology).