Logo - springer
Slogan - springer

Mathematics - Geometry & Topology | Convex Polytopes (Reviews)

Convex Polytopes

First Edition Prepared with the Cooperation of Victor Klee, Micha Perles, and Geoffrey C. Shephard

Series: Graduate Texts in Mathematics, Vol. 221

Grünbaum, Branko

Ziegler, Günter M. (Ed.)

Originally published by John Wiley, 1967

2nd ed. 2003, XVI, 471 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$49.99

(net) price for USA

ISBN 978-1-4613-0019-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-0-387-00424-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.95

(net) price for USA

ISBN 978-0-387-40409-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

"The appearance of Grünbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way." (Gil Kalai, The Hebrew University of Jerusalem)

"The original book of Grünbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day." (Louis J. Billera, Cornell University)

"The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." (Peter McMullen, University College London)

From the reviews of the second edition:

"Branko Grünbaum’s book is a classical monograph on convex polytopes … . As was noted by many researchers, for many years the book provided a central reference for work in the field and inspired a whole generation of specialists in polytope theory. … Every chapter of the book is supplied with a section entitled ‘Additional notes and comments’ … these notes summarize the most important developments with respect to the topics treated by Grünbaum. … The new edition … is an excellent gift for all geometry lovers." (Alexander Zvonkin, Mathematical Reviews, 2004b)

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Convex and Discrete Geometry.

Additional information