Logo - springer
Slogan - springer

Mathematics - Dynamical Systems & Differential Equations | Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra

Involution

The Formal Theory of Differential Equations and its Applications in Computer Algebra

Seiler, Werner M.

2010

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$139.00

(net) price for USA

ISBN 978-3-642-01287-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-642-01286-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-642-26135-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Ground-breaking monograph on the topic
As long as algebra and geometry proceeded along separate paths, their advance was slow and their applications limited. But when these sciences joined company they drew from each other fresh vitality and thenceforward marched on at rapid pace towards perfection Joseph L. Lagrange The theory of differential equations is one of the largest elds within mathematics and probably most graduates in mathematics have attended at least one course on differentialequations. But differentialequationsare also offundamentalimportance in most applied sciences; whenever a continuous process is modelled mathem- ically, chances are high that differential equations appear. So it does not surprise that many textbooks exist on both ordinary and partial differential equations. But the huge majority of these books makes an implicit assumption on the structure of the equations: either one deals with scalar equations or with normal systems, i. e. with systems in Cauchy–Kovalevskaya form. The main topic of this book is what happens, if this popular assumption is dropped. This is not just an academic exercise; non-normal systems are ubiquitous in - plications. Classical examples include the incompressible Navier–Stokes equations of uid dynamics, Maxwell’s equations of electrodynamics, the Yang–Mills eq- tions of the fundamental gauge theories in modern particle physics or Einstein’s equations of general relativity. But also the simulation and control of multibody systems, electrical circuits or chemical reactions lead to non-normal systems of - dinary differential equations, often called differential algebraic equations. In fact, most of the differentialequationsnowadaysencounteredby engineersand scientists are probably not normal.

Content Level » Research

Keywords » Gröbner bases - algebra - calculus - formal theory of differential equations - geometry - integrability - involution - overdetermined systems

Related subjects » Algebra - Dynamical Systems & Differential Equations - Theoretical, Mathematical & Computational Physics - Theoretical Computer Science

Table of contents / Sample pages 

Formal Geometry of Differential Equations.- Involution I: Algebraic Theory.- Completion to Involution.- Structure Analysis of Polynomial Modules.- Involution II: Homological Theory.- Involution III: Differential Theory.- The Size of the Formal Solution Space.- Existence and Uniqueness of Solutions.- Linear Differential Equations.- Miscellaneous.- Algebra.- Differential Geometry.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Partial Differential Equations.

Additional information