Logo - springer
Slogan - springer

Mathematics - Dynamical Systems & Differential Equations | From Hyperbolic Systems to Kinetic Theory - A Personalized Quest

From Hyperbolic Systems to Kinetic Theory

A Personalized Quest

Tartar, Luc


Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-540-77562-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-77561-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • A much-needed critical look at Maxwell and Boltzmann’s theories
  • Uses H-measures to explain some of the weaknesses in the theory

Equations of state are not always effective in continuum mechanics. Maxwell and Boltzmann created a kinetic theory of gases, using classical mechanics. How could they derive the irreversible Boltzmann equation from a reversible Hamiltonian framework? By using probabilities, which destroy physical reality! Forces at distance are non-physical as we know from Poincaré's theory of relativity. Yet Maxwell and Boltzmann only used trajectories like hyperbolas, reasonable for rarefied gases, but wrong without bound trajectories if the "mean free path between collisions" tends to 0. Tartar relies on his H-measures, a tool created for homogenization, to explain some of the weaknesses, e.g. from quantum mechanics: there are no "particles", so the Boltzmann equation and the second principle, can not apply. He examines modes used by energy, proves which equation governs each mode, and conjectures that the result will not look like the Boltzmann equation, and there will be more modes than those indexed by velocity!

Content Level » Research

Keywords » Navier-Stokes equation - conservation laws - fluid mechanics - heat equation - hyperbolic systems - interacting particle systems - wave equation

Related subjects » Classical Continuum Physics - Dynamical Systems & Differential Equations - Theoretical, Mathematical & Computational Physics

Table of contents 

1.Historical Perspective.- 2.Hyperbolic Systems: Riemann Invariants, Rarefaction Waves.- 3.Hyperbolic Systems: Contact Discontinuities, Shocks.- 4.The Burgers Equation and the 1-D Scalar Case.- 5.The 1-D Scalar Case: the E-Conditions of Lax and of Oleinik.- 6.Hopf’s Formulation of the E-Condition of Oleinik.- 7.The Burgers Equation: Special Solutions.- 8.The Burgers Equation: Small Perturbations; the Heat Equation.- 9.Fourier Transform; the Asymptotic Behaviour for the Heat Equation.- 10.Radon Measures; the Law of Large Numbers.- 11.A 1-D Model with Characteristic Speed 1/epsilon.- 12.A 2-D Generalization; the Perron–Frobenius Theory.- 13.A General Finite-Dimensional Model with Characteristic Speed 1/epsilon.- 14.Discrete Velocity Models.- 15.The Mimura–Nishida and the Crandall–Tartar Existence Theorems.- 16.Systems Satisfying My Condition (S).- 17.Asymptotic Estimates for the Broadwell and the Carleman Models.- 18.Oscillating Solutions; the 2-D Broadwell Model.- 19.Oscillating Solutions: the Carleman Model.- 20.The Carleman Model: Asymptotic Behaviour.- 21.Oscillating Solutions: the Broadwell Model.- 22.Generalized Invariant Regions; the Varadhan Estimate.- 23.Questioning Physics; from Classical Particles to Balance Laws.- 24.Balance Laws; What Are Forces?- 25.D. Bernoulli: from Masslets and Springs to the 1-D Wave Equation.- 26.Cauchy: from Masslets and Springs to 2-D Linearized Elasticity.- 27.The Two-Body Problem.- 28.The Boltzmann Equation.- 29.The Illner–Shinbrot and the Hamdache Existence Theorems.- 30.The Hilbert Expansion.- 31.Compactness by Integration.- 32.Wave Front Sets; H-Measures.- 33.H-Measures and 'Idealized Particles'.- 34.Variants of H-Measures.- 35.Biographical Information.- 36.Abbreviations and Mathematical Notation.- References.- Index.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Partial Differential Equations.

Additional information