Logo - springer
Slogan - springer

Mathematics - Dynamical Systems & Differential Equations | Spectral and Dynamical Stability of Nonlinear Waves

Spectral and Dynamical Stability of Nonlinear Waves

Series: Applied Mathematical Sciences, Vol. 185

Kapitula, Todd, Promislow, Keith

2013, XIII, 361 p. 50 illus.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4614-6995-7

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4614-6994-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • This book fills an important gap in the literature, bridging PDE and dynamical systems approach to stability
  • Presents a unified treatment of the dynamical systems and functional analysis background of nonlinear stability
  •  Includes illustrative examples and a variety of exercises

This book unifies the dynamical systems and functional analysis approaches to the linear and nonlinear stability of waves. It synthesizes fundamental ideas of the past 20+ years of research, carefully balancing theory and application. The book isolates and methodically develops key ideas by working through illustrative examples that are subsequently synthesized into general principles.

Many of the seminal examples of stability theory, including orbital stability of the KdV solitary wave, and asymptotic stability of viscous shocks for scalar conservation laws, are treated in a textbook fashion for the first time. It presents spectral theory from a dynamical systems and functional analytic point of view, including essential and absolute spectra, and develops general nonlinear stability results for dissipative and Hamiltonian systems. The structure of the linear eigenvalue problem for Hamiltonian systems is carefully developed, including the Krein signature and related stability indices. The Evans function for the detection of point spectra is carefully developed through a series of frameworks of increasing complexity. Applications of the Evans function to the Orientation index, edge bifurcations, and large domain limits are developed through illustrative examples. The book is intended for first or second year graduate students in mathematics, or those with equivalent mathematical maturity. It is highly illustrated and there are many exercises scattered throughout the text that highlight and emphasize the key concepts. Upon completion of the book, the reader will be in an excellent position to understand and contribute to current research in nonlinear stability.

Content Level » Graduate

Keywords » Evans function - Hamiltonian systems - Lyapunov-Schmidt reductions - Nonlinear Waves - Spectral Theory

Related subjects » Dynamical Systems & Differential Equations - Statistical Physics & Dynamical Systems

Table of contents 

Introduction.- Background material and notation.- Essential and absolute spectra.- Dynamical implications of spectra: dissipative systems.- Dynamical implications of spectra: Hamiltonian systems.- Dynamical implications of spectra: Hamiltonian systems.- Point spectrum: reduction to finite-rank eigenvalue problems.- Point spectrum: linear Hamiltonian systems.- The Evans function for boundary value problems.- The Evans function for Sturm-Liouville operators on the real line.- The Evans function for nth-order operators on the real line.- Index.- References.    

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Partial Differential Equations.