For Linear Partial Differential Equations with Generalized Solutions
Series: Springer Series in Computational Mathematics, Vol. 46
Jovanović, Boško S., Süli, Endre
2014, XIII, 408 p. 7 illus.
Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-1-4471-5460-0
digitally watermarked, no DRM
Included Format: PDF and EPUB
download immediately after purchase
Hardcover version
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-1-4471-5459-4
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions.
Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity.
In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions.
Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
Content Level » Research
Keywords » Bramble-Hilbert Lemma - Energy Estimates - Error Analysis - Finite Difference Methods - Generalized Solutions - Mollifiers - Numerical Analysis of Partial Differential Equations - Stability
Related subjects » Computational Science & Engineering - Dynamical Systems & Differential Equations
Get alerted on new Springer publications in the subject area of Numerical Analysis.