An Introduction to Statistical Programming
Pace, Larry
2012, XXIV, 336 p.
Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-1-4302-4555-1
digitally watermarked, no DRM
Included Format: PDF
download immediately after purchase
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-1-4302-4554-4
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets. R is also becoming adopted into commercial tools such as Oracle Database. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for statistical exploration and research.
Content Level » Popular/general
Related subjects » Computational Science & Engineering
1. Getting R and Getting Started
2. Programming in R
3. Writing Reusable Functions
4. Summary Statistics
Part II. Using R for Descriptive Statistics
5. Creating Tables and Graphs
6. Discrete Probability Distributions
7. Computing Standard Normal Probabilities
Part III. Using R for Inferential Statistics
8. Creating Confidence Intervals
9. Performing t Tests
10. Implementing One-Way ANOVA
11. Implementing Advanced ANOVA
12. Simple Correlation and Regression in R
13. Multiple Correlation and Regression in R
14. Logistic Regression
15. Performing Chi-Square Tests
16. Working in Nonparametric Statistics
Part IV. Taking R to the Next Level
17. Using R for Simulation
18. Resampling and Bootstrapping
19. Creating R Packages
20. Executing R Packages
Get alerted on new Springer publications in the subject area of Mathematical Software.