Logo - springer
Slogan - springer

Mathematics | Nonlinear Least Squares for Inverse Problems - Theoretical Foundations and Step-by-Step Guide

Nonlinear Least Squares for Inverse Problems

Theoretical Foundations and Step-by-Step Guide for Applications

Chavent, Guy

2010, XIV, 360p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-90-481-2785-6

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-90-481-2784-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-94-007-3060-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Step-by-step guide to solving nonlinear inverse problems with ‘least square’ methods
  • Contains a geometric theory to analyze wellposedness and optimizability
  • Detailed analysis of practical issues when solving nonlinear least square problems
  • Self-contained presentation of strictly quasi-convex sets
  • Each chapter inlcudes an overview of the presented concepts and results

This book provides an introduction into the least squares resolution of nonlinear inverse problems. The first goal is to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, i.e. both wellposedness and optimizability. Using the results, the applicability of various regularization techniques can be checked. The second objective of the book is to present frequent practical issues when solving NLS problems. Application oriented readers will find a detailed analysis of problems on the reduction to finite dimensions, the algebraic determination of derivatives (sensitivity functions versus adjoint method), the determination of the number of retrievable parameters, the choice of parametrization (multiscale, adaptive) and the optimization step, and the general organization of the inversion code. Special attention is paid to parasitic local minima, which can stop the optimizer far from the global minimum: multiscale parametrization is shown to be an efficient remedy in many cases, and a new condition is given to check both wellposedness and the absence of parasitic local minima.

For readers that are interested in projection on non-convex sets, Part II of this book presents the geometric theory of quasi-convex and strictly quasi-convex (s.q.c.) sets. S.q.c. sets can be recognized by their finite curvature and limited deflection and possess a neighborhood where the projection is well-behaved.

Throughout the book, each chapter starts with an overview of the presented concepts and results.

Content Level » Research

Keywords » analysis of NLS problems - analysis of nonlinear least square problems - choice of parametrization - inverse problem - inversion code - inversion method - inversion methods - least square method - least square methods - least square problem - least square problems;

Related subjects » Computational Intelligence and Complexity - Mathematics - Theoretical, Mathematical & Computational Physics

Table of contents 

Nonlinear Least Squares.- Nonlinear Inverse Problems: Examples and Difficulties.- Computing Derivatives.- Choosing a Parameterization.- Output Least Squares Identifiability and Quadratically Wellposed NLS Problems.- Regularization of Nonlinear Least Squares Problems.- A generalization of convex sets.- Quasi-Convex Sets.- Strictly Quasi-Convex Sets.- Deflection Conditions for the Strict Quasi-convexity of Sets.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical Modeling and Industrial Mathematics.