Logo - springer
Slogan - springer

Mathematics | Mathematisches Problemlösen und Beweisen - Eine Entdeckungsreise in die Mathematik

Mathematisches Problemlösen und Beweisen

Eine Entdeckungsreise in die Mathematik

Grieser, Daniel

2013, XI, 292 S. 121 Abb., 15 Abb. in Farbe.

Formate:
eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

 
$19.95

(net) Preis für USA

ISBN 978-3-8348-2460-8

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

Softcover
Information

Broschierte Ausgabe

Springer-Bücher können mit Visa, Mastercard, American Express, Paypal sowie auf Rechnung bezahlt werden.

Standard-Versand ist für Individualkunden kostenfrei.

 
$29.95

(net) Preis für USA

ISBN 978-3-8348-2459-2

kostenfreier Versand für Individualkunden

Der Titel wird nachgedruckt. Sie können ihn gerne vorbestellen.


add to marked items

  • Mathematische Probleme kreativ lösen
  • Daniel Grieser erhält  Ars legendi-Fakultätenpreis für exzellente Hochschullehre
  • „Durch die erfolgreiche Implementierung des didaktisch hochinnovativen und auch wissenschaftstheoretisch gründlich durchdachten Moduls Mathematisches Problemlösen und Beweisen leistet er insbesondere einen zukunftsweisenden Beitrag zur Gestaltung der Studieneingangsphase“
  • Das Buch eignet sich auch sehr gut für (Pro-)Seminare

S​tanden Sie schon einmal vor einem mathematischen Problem oder einer kniffeligen Knobelaufgabe und hatten keine Idee für einen Lösungsansatz? Oder die Ideen gingen Ihnen auf halber Strecke aus? Ist Kreativität erlernbar?
Hier setzt dieses Buch an: Der Autor bearbeitet Schritt für Schritt ausgewählte Probleme, die mit dem Schulwissen der Mittelstufe zu verstehen sind, und lädt Sie dabei zum Mitmachen ein. Davon ausgehend werden Ihnen systematisch Problemlösestrategien, die Grundlagen der Logik und die wichtigsten Beweistechniken vermittelt. Bei der Lektüre des Buches werden Sie Ihre Kreativität schulen und sich universelle Prinzipien der Wissenschaft Mathematik aneignen, die weit über die gestellten Aufgaben hinausreichen und Ihnen den Weg zur höheren Mathematik ebnen. Sie lernen, selbständig mathematische Probleme zu lösen, den Sinn von Beweisen zu verstehen und selbst Beweise zu finden.
Das Buch basiert auf einer einsemestrigen Vorlesung, die der Autor an der Universität Oldenburg mit großem Erfolg gehalten hat. Es eignet sich zum Selbststudium, als Grundlage für einführende Lehrveranstaltungen im Mathematikstudium und für problemlöseorientierten Unterricht in der Schule.

Der Inhalt
Erste mathematische Erkundungen - Die Idee der Rekursion - Vollständige Induktion - Graphen - Abzählen - Allgemeine Strategien - Logik und Beweise - Elementare Zahlentheorie - Das Schubfachprinzip - Das Extremalprinzip -Das Invarianzprinzip - Ein Überblick über Problemlösestrategien ​- Grundbegriffe zu Mengen und Abbildungen - Übungsaufgaben zu jedem Kapitel - Hinweise zu den Aufgaben

Die Zielgruppen
Studierende in den ersten Hochschulsemestern
Lehrende an Schulen und Hochschulen
Schülerinnen und Schüler
Alle, die neugierig auf Mathematik sind

Der Autor
Prof. Dr. Daniel Grieser lehrt und forscht am Institut für Mathematik der Carl von Ossietzky Universität Oldenburg.

Die Reihe
Bachelorkurs Mathematik

Content Level » Lower undergraduate

Stichwörter » Invarianzprinzip - Mathematische Aufgaben - Rekursion - Schubfachprinzip - Vollständige Induktion

Verwandte Fachbereiche » Didaktik der Mathematik - Mathematik

Inhaltsverzeichnis 

Erste mathematische Erkundungen - Die Idee der Rekursion - Vollständige Induktion - Graphen - Abzählen - Allgemeine Strategien - Logik und Beweise - Elementare Zahlentheorie - Das Schubfachprinzip - Das Extremalprinzip -Das Invarianzprinzip - Ein Überblick über Problemlösestrategien - Grundbegriffe zu Mengen und Abbildungen - Übungsaufgaben zu jedem Kapitel - Hinweise zu den Aufgaben

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Mathematik (allgemein).

Zusätzliche Informationen