Logo - springer
Slogan - springer

Mathematics | Reelle Zahlen - Das klassische Kontinuum und die natürlichen Folgen

Reelle Zahlen

Das klassische Kontinuum und die natürlichen Folgen

Deiser, Oliver

2., korr. u. erw. Aufl. 2008

Formate:
eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

 
$39.99

(net) Preis für USA

ISBN 978-3-540-79376-2

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

Softcover
Information

Broschierte Ausgabe

Springer-Bücher können mit Visa, Mastercard, American Express, Paypal sowie auf Rechnung bezahlt werden.

Standard-Versand ist für Individualkunden kostenfrei.

 
$49.99

(net) Preis für USA

ISBN 978-3-540-79375-5

kostenfreier Versand für Individualkunden

gewöhnlich versandfertig in 3-5 Werktagen


add to marked items

  • Vertieft den in den Grundvorlesungen erworbenen Stoff
  • Ideal geeignet als Grundlage für Seminare
  • Historische Überblicke machen Zusammenhänge und Entwicklungen transparent

Das Buch untersucht die reellen Zahlen unter verschiedenen grundlagentheoretischen Gesichtspunkten. Ziel ist, die Komplexität dieser einzigartigen mathematischen Grundstruktur sichtbar zu machen.

Im ersten Teil richtet sich der Blick auf die arithmetische Zahlengerade. Der Bogen spannt sich hier zunächst von der Entdeckung der irrationalen Zahlen durch die alten Griechen über das Kontinuumsproblem bis hin zu modernen Konstruktionsmöglichkeiten. Nach einer Analyse euklidischer Isometrien werden dann ausführlich Grundfragen der Maßtheorie behandelt (Probleme des Messens, Banach-Tarski-Paradoxon, Existenz bewegungsinvarianter Inhalte, Fortsetzungen des Lebesgue-Maßes).

Der zweite Teil des Buches untersucht den zu den irrationalen Zahlen homöomorphen Raum aller Folgen natürlicher Zahlen und allgemeiner polnische Räume. Die Themen umfassen Regularitätseigenschaften von Teilmengen reeller Zahlen, irreguläre Mengen, Borel-Mengen und projektive Mengen. Das Buch schließt mit einer Einführung in die Theorie der unendlichen Zweipersonenspiele.

Content Level » Upper undergraduate

Stichwörter » Analysis - Differenzialgleichung - Maße - Reelle Zahlen - deskriptive Mengenlehre - reellen Zahl - unendliche Spiele

Verwandte Fachbereiche » Analysis - Mathematik

Inhaltsverzeichnis 

Einführung.- Einführung.- Die Themen des Buches.- Die Themen des Buches.- Vokabular.- Vokabular.- Das klassische Kontinuum.- Irrationale Zahlen.- Intermezzo: Zur Geschichte der Analysis.- Mächtigkeiten.- Charakterisierungen und Konstruktionen.- Euklidische Isometrien.- Inhalte und Maße.- Die Grenzen des Messens.- Die Folgenräume.- Einführung in den Baireraum.- Topologische Untersuchungen.- Regularitätseigenschaften.- Intermezzo: Wohlordnungen und Ordinalzahlen.- Irreguläre Mengen.- Unendliche Zweipersonenspiele.- Borelmengen und projektive Mengen.

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Mathematische Logik und Mengenlehre.