Logo - springer
Slogan - springer

Mathematics | Mathematical Models of Financial Derivatives

Mathematical Models of Financial Derivatives

Kwok, Yue-Kuen

2nd ed. 2008, XV, 530 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-3-540-68688-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-3-540-42288-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-3-642-44793-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • An update of a classic in the field, the first edition gained a good reputation and was on of the earliest introductory textbooks in mathematical finance

Mathematical Models of Financial Derivatives is a textbook on the theory behind

modeling derivatives using the financial engineering approach, focussing on the martingale pricing principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are

analyzed, emphasizing on the aspects of pricing, hedging and their risk management. Starting from the renowned Black-Scholes-Merton formulation of option pricing model, readers are guided through the text on the new advances on the state-of-the-art derivative pricing models and interest rate models. Both analytic techniques and numerical methods for solving various types of derivative pricing models are emphasized.

The second edition presents a substantial revision of the first edition. The continuous-time martingale pricing theory is motivated through analysis of the underlying financial economics principles within a discrete-time framework. A large collection of closed-form formulas of various forms of exotic equity and fixed income derivatives are documented. The most recent research results and methodologies are made accessible to readers through the extensive set of exercises at the end of each chapter.

Yue-Kuen Kwok is Professor of Mathematics at Hong Kong University of Science and Technology. He is the author of over 80 research papers and several books, including Applied Complex Variables. He is an associate editor of Journal of Economic Dynamics and Control and Asia-Pacific Financial Markets.

Content Level » Research

Keywords » Credit Derivatives - Finance - Financial derivatives - Hedging - Investment - JEL: G12, G13 - Stochastic calculus - exotic options - interest rate models - martingale pricing - mathematical finance - optimal stopping models

Related subjects » Applications - Finance & Banking - Mathematics - Probability Theory and Stochastic Processes - Public Finance - Quantitative Finance

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical Modeling and Industrial Mathematics.