Logo - springer
Slogan - springer

Mathematics | Data Storage for Social Networks - A Socially Aware Approach

Data Storage for Social Networks

A Socially Aware Approach

Tran, Duc A.

2013, VIII, 47 p. 12 illus., 2 illus. in color.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4614-4636-1

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4614-4635-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Discusses existing storage solutions for today's most popular online social networks (OSNs).
  • Hot topic of social networks will appeal to a broad readership
  • Fuses existing literature and new methods

Evidenced by the success of Facebook, Twitter, and LinkedIn, online social networks (OSNs) have become ubiquitous, offering novel ways for people to access information and communicate with each other. As the increasing popularity of social networking is undeniable, scalability is an important issue for any OSN that wants to serve a large number of users. Storing user data for the entire network on a single server can quickly lead to a bottleneck, and, consequently, more servers are needed to expand storage capacity and lower data request traffic per server. Adding more servers is just one step to address scalability.

The next step is to determine how best to store the data across multiple servers. This problem has been widely-studied in the literature of distributed and database systems. OSNs, however, represent a different class of data systems. When a user spends time on a social network, the data mostly requested is her own and that of her friends; e.g., in Facebook or Twitter, these data are the status updates posted by herself as well as that posted by the friends. This so-called social locality should be taken into account when determining the server locations to store these data, so that when a user issues a read request, all its relevant data can be returned quickly and efficiently. Social locality is not a design factor in traditional storage systems where data requests are always processed independently.

Even for today’s OSNs, social locality is not yet considered in their data partition schemes. These schemes rely on  distributed hash tables (DHT), using consistent hashing to assign the users’ data to the servers. The random nature of DHT leads to weak social locality which has been shown to result in poor performance under heavy request loads.

Data Storage for Social Networks: A Socially Aware Approach is aimed at reviewing the current literature of data storage for online social networks and discussing new methods that take into account social awareness in designing efficient data storage.

Content Level » Research

Keywords » Data Replication - Data Storage - Distributed Systems - Online Social Networks - Socially Aware Networks

Related subjects » Database Management & Information Retrieval - Mathematics

Table of contents 

1. Introduction (Amazon’s Dynamo, Google’s BigTable, Apache Cassandra).-2. Social Locality in Data Storage (Perfect vs. Imperfect Social Locality, Assumptions and Notations, Optimization Objectives, Multi-Objective Optimization).- 3. S-PUT (Approach, Algorithm, Numerical Results, Notes).- 4. S-CLONE (Approach, Algorithm, Numerical Results, Notes)- 5. Epilogue. –References.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Optimization.