Logo - springer
Slogan - springer

Mathematics | Complex Systems

Complex Systems

Goles, E., Martínez, Servet (Eds.)

2001, VIII, 301 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$189.00

(net) price for USA

ISBN 978-94-010-0920-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$239.00

(net) price for USA

ISBN 978-0-7923-6830-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$239.00

(net) price for USA

ISBN 978-94-010-3817-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

This volume contains the courses given at the Sixth Summer School on Complex Systems held at Facultad de Ciencias Fisicas y Maternaticas, Universidad de Chile at Santiago, Chile, from 14th to 18th December 1998. This school was addressed to graduate students and researchers working on areas related with recent trends in Complex Systems, including dynamical systems, cellular automata, complexity and cutoff in Markov chains. Each contribution is devoted to one of these subjects. In some cases they are structured as surveys, presenting at the same time an original point of view and showing mostly new results. The paper of Pierre Arnoux investigates the relation between low complex systems and chaotic systems, showing that they can be put into relation by some re­ normalization operations. The case of quasi-crystals is fully studied, in particular the Sturmian quasi-crystals. The paper of Franco Bagnoli and Raul Rechtman establishes relations be­ tween Lyapunov exponents and synchronization processes in cellular automata. The principal goal is to associate tools, usually used in physical problems, to an important problem in cellularautomata and computer science, the synchronization problem. The paper of Jacques Demongeot and colleagues gives a presentation of at­ tractors of dynamical systems appearing in biological situations. For instance, the relation between positive or negative loops and regulation systems.

Content Level » Research

Keywords » Chaos - Markov - algorithm - algorithms - automata - coding - complex system - complex systems - complexity - dynamische Systeme - modeling - statistical physics - statistics - thermodynamics

Related subjects » Applications - Complexity - Mathematics - Statistics - Theoretical Computer Science

Table of contents 

Foreword. Recoding Sturmian Sequences on a Subshift of Finite Type Chaos from Order: A Worked out Example; P. Arnoux. Lyapunov Exponents and Synchronization of Cellular Automata; F. Bagnoli, R. Rechtman. Dynamical Systems and Biological Regulations; J. Demongeot, et al. Cellular Automata and Artificial Life; K. Morita. Why Kolmogorov Complexity?; V.A. Uspensky. Cutoff for Markov Chains: Some Examples and Applications; B. Ycart.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical Modeling and Industrial Mathematics.