Skip to main content

Modeling and Optimization of the Lifetime of Technologies

  • Book
  • © 1996

Overview

Part of the book series: Applied Optimization (APOP, volume 4)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (15 chapters)

  1. Integral Dynamical Models of Evolving Systems

  2. Analysis of One-Sector Integral Dynamical Models

  3. Analysis of Multi-Sector Integral Dynamical Models

  4. Applied Problems of Integral Dynamic Models

Keywords

About this book

Modern economic growth is characterized by structural changes based on the introduction of new technologies into economics. The replacement and renova­ tion of technologies in industrial environments undergoing technical change is clearly one of the key aspects of economic development. The mathematical modeling of evolutionary economics under technical change (TC) has been rigorously considered by many authors during last decades. There is a wide variety of economic approaches and models describing different aspects of technical change. Among these are the models of embodied technical progress [19], [35], [70], [129], endogenous growth models [94], [102], the models of technological innovations [31], [32], [41], and others. The perspective self­ organization evolutionary approach is developed in [20], [38], [122], [123], [124], [126], which unites the aspects of diffusion of new technologies, technological and behavioral diversity of firms, learning mechanisms, age-dependent effects, and other important features of real-life economics. On the whole, an interest in evolutionary economics has brought considerable progress in the description and conceptualization of the sources, characteristics, direction and effects of technical change [125]. However, the modeling and control of technology lifetime under technical change has received rather little attention in mathematical economics in con­ trary to other aspects of technical progress. The lifetime of technologies has rarely been formally treated as a part of more general mathematical theory of economic dynamics. A problem which is still to be resolved consists in establishing the rational strategies of technologies' replacement under various assumptions on the behavior of technical change.

Authors and Affiliations

  • Department of Cybernetics, Kiev University, Kiev, Ukraine

    Natali Hritonenko

  • Glushkov Institute of Cybernetics, Ukrainian Academy of Sciences, Kiev, Ukraine

    Yuri Yatsenko

Bibliographic Information

Publish with us