Logo - springer
Slogan - springer

Mathematics - Applications | Mathematik für Informatiker - Ausführlich erklärt mit vielen Programmbeispielen und Aufgaben

Mathematik für Informatiker

Ausführlich erklärt mit vielen Programmbeispielen und Aufgaben

Schubert, Matthias

2009, 798S. 99 Abb..

eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

(net) Preis für USA

ISBN 978-3-8348-9585-1

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

$49.95
  • Mathematik für Informatiker - alles, was Sie wirklich brauchen!
Dieses Buch entstand ausgehend von der Frage, welche Mathematik Informatiker wirklich brauchen. Es vermittelt das mathematische Handwerkszeug fundiert und mathematisch präzise. Zugleich macht es deutlich, an welchen Stellen Sie dieses Wissen als Informatiker brauchen werden. Die große Anzahl von Übungsaufgaben hilft Ihnen, sich ganz gezielt auf Prüfungen vorzubereiten.

Content Level » Upper undergraduate

Stichwörter » Algorithmen - Analysis - Boolesche Algebra - Graphentheorie - Informatik - Kryptographie - Mathematik für Informatiker - Statistik - algebraische Strukturen

Verwandte Fachbereiche » Grundlagen

Inhaltsverzeichnis 

Grundbegriffe der Aussagen- und Prädikatenlogik.- Grundbegriffe der Mengenlehre.- Natürliche Zahlen.- Andere Schreibweisen für die natürlichen Zahlen.- Ganze Zahlen und Rationale Zahlen – Gruppen, Ringe und Körper.- Äquivalenzrelationen und Äquivalenzklassen.- Endliche Gruppen und Endliche Körper.- Zahlentheorie und Kryptographie.- Die reellen Zahlen.- Die komplexen Zahlen.- Boolesche Algebra.- Boolesche Gesetze, Dualitäten und Diagramme.- Leonhard Euler und die 7 Brücken von Königsberg.- Bäume.- Kürzeste Wege und der Algorithmus von Dijkstra.- Binärbäume und rekursive Strukturen.- Paarungsprobleme und ihre ungarischen Lösungen.- Laufzeiten und Komplexitäten, P und NP.- Beschreibende Statistik.- Grundlagen der Wahrscheinlichkeitsrechnung.- Diskrete Zufallsvariable.- Stetige Zufallsvariable.- Schätzungen.- Tests, Tests, Tests.

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Angewandte Mathematik.