Logo - springer
Slogan - springer

Mathematics - Applications | Approximation Algorithms and Semidefinite Programming

Approximation Algorithms and Semidefinite Programming

Gärtner, Bernd, Matousek, Jiri

2012, XI, 251 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.99

(net) price for USA

ISBN 978-3-642-22015-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$59.95

(net) price for USA

ISBN 978-3-642-22014-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$59.95

(net) price for USA

ISBN 978-3-642-43332-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • First textbook treatment of an often-taught topic
  • Combines in-depth treatment of classical material with coverage of very recent developments
  • Every chapter comes with an extensive list of exercises

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material.  

There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms.

 

This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.

Content Level » Graduate

Keywords » approximation algorithms - semidefinite programming

Related subjects » Applications - Computational Science & Engineering - Mathematics - Theoretical Computer Science

Table of contents / Sample pages 

Part I (by Bernd Gärtner): 1 Introduction: MAXCUT via Semidefinite Programming.- 2 Semidefinite Programming.- 3 Shannon Capacity and Lovász Theta.-  4 Duality and Cone Programming.-  5 Approximately Solving Semidefinite Programs.- 6 An Interior-Point Algorithm for Semidefinite Programming.- 7 Compositive Programming.-  Part II (by Jiri Matousek): 8 Lower Bounds for the Goemans–Williamson MAXCUT Algorithm .- 9 Coloring 3-Chromatic Graphs.- 10 Maximizing a Quadratic Form on a Graph.- 11 Colorings With Low Discrepancy.- 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely.- 13 Rounding Via Miniatures.- Summary.- References.- Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Applications of Mathematics.