Logo - springer
Slogan - springer

Mathematics - Applications | Reactive Search and Intelligent Optimization

Reactive Search and Intelligent Optimization

Battiti, Roberto, Brunato, Mauro, Mascia, Franco

1st Edition. 2nd Printing. 2008, X, 182p. 74 illus..

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$129.00

(net) price for USA

ISBN 978-0-387-09624-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$169.00

(net) price for USA

ISBN 978-0-387-09623-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$169.00

(net) price for USA

ISBN 978-1-4419-3499-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents the main principles of reactive search and intelligent optimization and clearly shows how they can be used in problem solving

Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems.  By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found.  Intelligent Optimization, a superset of Reactive Search, concerns online and off-line schemes based on the use of memory, adaptation, incremental development of models, experimental algorithms applied to optimization, intelligent tuning and design of heuristics.

 

Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies.  While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics.

 

Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more.  Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities and schemes for the automated tuning of these parameters.  Anyone working in decision making in business, engineering, economics or science will find a wealth of information here.

 

Content Level » Research

Keywords » algorithm - algorithms - artificial intelligence - experimental algorithmics - heuristics - learning - linear optimization - machine learning - optimization - reactive search - stochastic local search

Related subjects » Applications - Artificial Intelligence - Computational Intelligence and Complexity - Operations Research & Decision Theory - Production & Process Engineering

Table of contents 

Introduction: Machine Learning for Intelligent Optimization.- Reacting on the neighborhood.- Reacting on the Annealing Schedule.- Reactive Prohibitions.- Reacting on the Objective Function.- Reacting on the Objective Function.- Supervised Learning.- Reinforcement Learning.- Algorithm Portfolios and Restart Strategies.- Racing.- Teams of Interacting Solvers.- Metrics, Landscapes and Features.- Open Problems.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Operations Research, Mathematical Programming.