Logo - springer
Slogan - springer

Mathematics - Analysis | Function Spaces and Potential Theory

Function Spaces and Potential Theory

Adams, David R., Hedberg, Lars I.

1996, XI, 368 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$99.00

(net) price for USA

ISBN 978-3-662-03282-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-540-57060-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-642-08172-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Function spaces, especially those spaces that have become known as Sobolev spaces, and their natural extensions, are now a central concept in analysis. In particular, they play a decisive role in the modem theory of partial differential equations (PDE). Potential theory, which grew out of the theory of the electrostatic or gravita­ tional potential, the Laplace equation, the Dirichlet problem, etc. , had a fundamen­ tal role in the development of functional analysis and the theory of Hilbert space. Later, potential theory was strongly influenced by functional analysis. More re­ cently, ideas from potential theory have enriched the theory of those more general function spaces that appear naturally in the study of nonlinear partial differential equations. This book is motivated by the latter development. The connection between potential theory and the theory of Hilbert spaces can be traced back to C. F. Gauss [181], who proved (with modem rigor supplied almost a century later by O. Frostman [158]) the existence of equilibrium potentials by minimizing a quadratic integral, the energy. This theme is pervasive in the work of such mathematicians as D. Hilbert, Ch. -J. de La Vallee Poussin, M. Riesz, O. Frostman, A. Beurling, and the connection was made particularly clear in the work of H. Cartan [97] in the 1940's. In the thesis of J. Deny [119], and in the subsequent work of J. Deny and J. L.

Content Level » Research

Keywords » Approximation Theory - Capacity - Distribution - Fourier transform - Function Spaces - Hilbert space - Potential theory - Singular integral - convolution

Related subjects » Analysis

Table of contents 

1. Preliminaries.- 1.1 Basics.- 1.1.1 Convention.- 1.1.2 Notation.- 1.1.3 Spaces of Functions and Their Duals.- 1.1.4 Maximal Functions.- 1.1.5 Integral Inequalities.- 1.1.6 Distributions.- 1.1.7 The Fourier Transform.- 1.1.8 The Riesz Transform and Singular Integrals.- 1.2 Sobolev Spaces and Bessel Potentials.- 1.2.1 Sobolev Spaces.- 1.2.2 Riesz Potentials.- 1.2.3 Bessel Potentials.- 1.2.4 Bessel Kernels.- 1.2.5 Some Classical Formulas for Bessel Functions.- 1.2.6 Bessel Potential Spaces.- 1.2.7 The Sobolev Imbedding Theorem.- 1.3 Banach Spaces.- 1.4 Two Covering Lemmas.- 2. Lp-Capacities and Nonlinear Potentials.- 2.1 Introduction.- 2.2 A First Version of (?, p)-Capacity.- 2.3 A General Theory for LP-Capacities.- 2.4 The Minimax Theorem.- 2.5 The Dual Definition of Capacity.- 2.6 Radially Decreasing Convolution Kernels.- 2.7 An Alternative Definition of Capacity and Removability of Singularities.- 2.8 Further Results.- 2.9 Notes.- 3. Estimates for Bessel and Riesz Potentials.- 3.1 Pointwise and Integral Estimates.- 3.2 A Sharp Exponential Estimate.- 3.3 Operations on Potentials.- 3.4 One-Sided Approximation.- 3.5 Operations on Potentials with Fractional Index.- 3.6 Potentials and Maximal Functions.- 3.7 Further Results.- 3.8 Notes.- 4. Besov Spaces and Lizorkin-Triebel Spaces.- 4.1 Besov Spaces.- 4.2 Lizorkin-Triebel Spaces.- 4.3 Lizorkin-Triebel Spaces, Continued.- 4.4 More Nonlinear Potentials.- 4.5 An Inequality of Wolff.- 4.6 An Atomic Decomposition.- 4.7 Atomic Nonlinear Potentials.- 4.8 A Characterization of L?,P.- 4.9 Notes.- 5. Metric Properties of Capacities.- 5.1 Comparison Theorems.- 5.2 Lipschitz Mappings and Capacities.- 5.3 The Capacity of Cantor Sets.- 5.4 Sharpness of Comparison Theorems.- 5.5 Relations Between Different Capacities.- 5.6 Further Results.- 5.7 Notes.- 6. Continuity Properties.- 6.1 Quasicontinuity.- 6.2 Lebesgue Points.- 6.3 Thin Sets.- 6.4 Fine Continuity.- 6.5 Further Results.- 6.6 Notes.- 7. Trace and Imbedding Theorems.- 7.1 A Capacitary Strong Type Inequality.- 7.2 Imbedding of Potentials.- 7.3 Compactness of the Imbedding.- 7.4 A Space of Quasicontinuous Functions.- 7.5 A Capacitary Strong Type Inequality. Another Approach.- 7.6 Further Results.- 7.7 Notes.- 8. Poincaré Type Inequalities.- 8.1 Some Basic Inequalities.- 8.2 Inequalities Depending on Capacities.- 8.3 An Abstract Approach.- 8.4 Notes.- 9. An Approximation Theorem.- 9.1 Statement of Results.- 9.2 The Case m = 1.- 9.3 The General Case. Outline.- 9.4 The Uniformly (1, p)-Thick Case.- 9.5 The General Thick Case.- 9.6 Proof of Lemma 9.5.2 for m = 1.- 9.7 Proof of Lemma 9.5.2.- 9.8 Estimates for Nonlinear Potentials.- 9.9 The Case Cm p(K) = 0.- 9.10 The Case Ck,p(K) = 0, 1 ? k < m.- 9.11 Conclusion of the Proof.- 9.12 Further Results.- 9.13 Notes.- 10. Two Theorems of Netrusov.- 10.1 An Approximation Theorem, Another Approach.- 10.2 A Generalization of a Theorem of Whitney.- 10.3 Further Results.- 10.4 Notes.- 11. Rational and Harmonic Approximation.- 11.1 Approximation and Stability.- 11.2 Approximation by Harmonic Functions in Gradient Norm.- 11.3 Stability of Sets Without Interior.- 11.4 Stability of Sets with Interior.- 11.5 Approximation by Harmonic Functions and Higher Order Stability.- 11.6 Further Results.- 11.7 Notes.- References.- List of Symbols.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Functional Analysis.