Logo - springer
Slogan - springer

Mathematics - Analysis | Introduction to Tensor Products of Banach Spaces

Introduction to Tensor Products of Banach Spaces

Ryan, Raymond A.

2002, XIV, 226 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$79.99

(net) price for USA

ISBN 978-1-4471-3903-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-85233-437-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-84996-872-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give addi­ tional material on Banach Spaces and Measure Theory that may be unfamil­ iar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "tensorial thinking" yields insights into many otherwise mysterious phenom­ ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book.

Content Level » Research

Keywords » Banach Space - Tensor Products - approximation property - functional analysis - measure

Related subjects » Analysis

Table of contents 

1 Tensor Products.- 2 The Projective Tensor Product.- 3 The Injective Tensor Product.- 4 The Approximation Property.- 5 The Radon-Nikodÿm Property.- 6 The Chevet-Saphar Tensor Products.- 7 Tensor Norms.- 8 Operator Ideals.- A Suggestions for Further Reading.- B Summability in Banach Spaces.- C Spaces of Measures.- References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Analysis.