Logo - springer
Slogan - springer

Mathematics - Analysis | Uniform Spaces and Measures

Uniform Spaces and Measures

Series: Fields Institute Monographs, Vol. 30

Pachl, Jan

2013, X, 210 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$79.99

(net) price for USA

ISBN 978-1-4614-5058-0

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-4614-5057-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-4899-9258-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • ​Presents a self-contained development of selected topics in the theory of uniform spaces using pseudometrics rather than the more common approach via entourages
  • Contains exercises and research problems and can be used as supplementary text in graduate and advanced undergraduate courses
  • Details the history of core concepts and links to key references to help the reader understand connections to related areas and explore other sources​

Uniform Spaces and Measures addresses the need for an accessible and comprehensive exposition of the theory of uniform measures -- a need that became more critical when uniform measures recently reemerged in new results in abstract harmonic analysis. Until now, results about uniform measures have been scattered throughout many papers written by a number of authors, some unpublished, using a variety of definitions and notations.

Uniform measures are functionals on the space of bounded uniformly continuous functions on a uniform space. They are a common generalization of several classes of measures and measure-like functionals studied in topological measure theory, probability theory, and abstract harmonic analysis. They offer a natural framework for results about topologies on spaces of measures and about the continuity of convolution of measures on topological groups and semitopological semigroups.

This book can serve as a reference for the theory of uniform measures. It includes a self-contained development of the theory with complete proofs, starting with the necessary parts of the theory of uniform spaces. It also includes several new results, and presents diverse results from many sources organized in a logical whole. The content is also suitable for graduate or advanced undergraduate courses on selected topics in topology and functional analysis, and contains a number of exercises with hints to solutions as well as several open problems with suggestions for further research.

Content Level » Research

Keywords » abstract harmonic analysis - semitopological semigroups - topologies on spaces of measures - uniform measures

Related subjects » Analysis

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Functional Analysis.