Logo - springer
Slogan - springer

Mathematics - Analysis | Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming

Lee, Jon, Leyffer, Sven (Eds.)

2012, XX, 692 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$159.00

(net) price for USA

ISBN 978-1-4614-1927-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-4614-1926-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-4939-0221-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Contains expository and research papers based on a highly successful IMA Hot Topics Workshop “Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications”
  • Combines the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables
  • Includes survey articles, new research material, and novel applications of MINLP
​Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Content Level » Research

Keywords » CONVEX MINLP - DISJUNCTIVE PROGRAMMING - NONLINEAR PROGRAMMING

Related subjects » Analysis - Computational Science & Engineering

Table of contents 

​Foreword.- Preface.-Algorithms and software for convex mixed integer nonlinearprograms.-  Subgradient based outer approximation for mixed integer secondorder cone programming.-Perspective reformulation and applications.- Generalized disjunctive programming: A framework for formulation and alternative algorithms for MINLP optimization.-Disjunctive cuts for nonconvex MINLP.- Sequential quadratic programming methods.- Using interior-point methods within an outer approximation framework for mixed integer nonlinear programming.- Using expression graphs in optimization algorithms.- Symmetry in mathematical programming.- Using piecewise linear functions for solving MINLPs.- An algorithmic framework for MINLP with separable non-convexity.- Global optimization of mixed-integer signomial programming problems.-The MILP road to MIQCP.- Linear programming relaxations of quadratically constrained quadratic programs.- Extending a CIP framework to solve MIQCPs.- Computation with polynomial equations and inequalities arisingin combinatorial optimization.-  Matrix relaxations in combinatorial optimization.- A polytope for a product of real linear functions in 0/1 variables.- On the complexity of nonlinear mixed-integer optimization.- Theory and applications of n-fold integer programming.- MINLP Application for ACH interiors restructuring.- A benchmark library of mixed-integer optimal control problems.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Approximations and Expansions.