Logo - springer
Slogan - springer

Mathematics - Analysis | A Sequence of Problems on Semigroups

A Sequence of Problems on Semigroups

Neuberger, John

2011, VI, 142 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$29.99

(net) price for USA

ISBN 978-1-4614-0430-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$49.95

(net) price for USA

ISBN 978-1-4614-0429-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$49.95

(net) price for USA

ISBN 978-1-4614-3006-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Written in the Socratic/Moore method style and provision of references, enables the motivated student to arrive at the point of independent research
  • Student who works through the problems will have a range of introduction to aspects of one-parameter semigroups of transformations
  • Problems include wide applicability to probability and the Heat equation

A Sequence of Problems on Semigroups consists of an arrangement of problems which are designed to develop a variety of aspects to understanding the area of one-parameter semigroups of operators. Written in the Socratic/Moore method, this is a problem book with neither the proofs nor the answers presented. To get the most out of the content requires high motivation to work out the exercises. However, the reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research.

Many of the problems are not found easily in other books and they vary in level of difficulty. A few open research questions are also presented. The compactness of the volume and the reputation of the author lends this concise set of problems to be a 'classic' in the making. This text is highly recommended for use as supplementary material for three graduate level courses.

Content Level » Graduate

Keywords » linear continuous semigroups - nonlinear semigroups - semigroups - semigroups and application to the heat equation - semigroups and probability

Related subjects » Algebra - Analysis

Table of contents 

-Preface.-1. Introduction.-2. The idea of a semigroup.-3. Translation semigroups.-4. Linear continuous semigroups.-5.Strongly continuous linear semigroups.-6. An Application to the Heat Equation.-7. Some Problems in Analysis.-8.Semigroups of steepest descent.-9. Numerics of semigroups of steepest descent.-10. Nonlinear semigroups studied by linear methods.-11. Measures and linear extension of nonlinear semigroups.-12. Local semigroups and Lie generators.-13. Quasi-analyticity of semigroups.-14. Continuous Newton's method and semigroups-15. Generalized semigroups without forward uniqueness.-16. Semigroups of nonlinear contractions and monotone operators.-17. Notes.-18. References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Analysis.