Logo - springer
Slogan - springer

Mathematics - Analysis | Dynamics and Bifurcations

Dynamics and Bifurcations

Hale, Jack K., Kocak, Hüseyin

1991, XIV, 574 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$79.95

(net) price for USA

ISBN 978-1-4612-4426-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-0-387-97141-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-4612-8765-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

The subject of differential and difference equations is an old and much-honored chapter in science, one which germinated in applied fields such as celestial mechanics, nonlinear oscillations, and fluid dynamics. In recent years, due primarily to the proliferation of computers, dynamical systems has once more turned to its roots in applications with perhaps a more mature look. Many of the available books and expository narratives either require extensive mathematical preparation, or are not designed to be used as textbooks. The authors have filled this void with the present book.

Content Level » Graduate

Keywords » Eigenvalue - bifurcation - difference equation - dynamical systems - stability

Related subjects » Analysis - Complexity

Table of contents 

I: Dimension One.- 1. Scalar Autonomous Equations.- 1.1. Existence and Uniqueness.- 1.2. Geometry of Flows.- 1.3. Stability of Equilibria.- 1.4. Equations on a Circle.- 2. Elementary Bifurcations.- 2.1. Dependence on Parameters - Examples.- 2.2. The Implicit Function Theorem.- 2.3. Local Perturbations Near Equilibria.- 2.4. An Example on a Circle.- 2.5. Computing Bifurcation Diagrams.- 2.6. Equivalence of Flows.- 3. Scalar Maps.- 3.1. Euler’s Algorithm and Maps.- 3.2. Geometry of Scalar Maps.- 3.3. Bifurcations of Monotone Maps.- 3.4. Period-doubling Bifurcation.- 3.5. An Example: The Logistic Map.- II: Dimension One and One Half.- 4. Scalar Nonautonomous Equations.- 4.1. General Properties of Solutions.- 4.2. Geometry of Periodic Equations.- 4.3. Periodic Equations on a Cylinder.- 4.4. Examples of Periodic Equations.- 4.5. Stability of Periodic Solutions.- 5. Bifurcation of Periodic Equations.- 5.1. Bifurcations of Poincaré Maps.- 5.2. Stability of Nonhyperbolic Periodic Solutions.- 5.3. Perturbations of Vector Fields.- 6. On Tori and Circles.- 6.1. Differential Equations on a Torus.- 6.2. Rotation Number.- 6.3. An Example: The Standard Circle Map.- III: Dimension Two.- 7. Planar Autonomous Systems.- 7.1. “Natural” Examples of Planar Systems.- 7.2. General Properties and Geometry.- 7.3. Product Systems.- 7.4. First Integrals and Conservative Systems.- 7.5. Examples of Elementary Bifurcations.- 8. Linear Systems.- 8.1. Properties of Solutions of Linear Systems.- 8.2. Reduction to Canonical Forms.- 8.3. Qualitative Equivalence in Linear Systems.- 8.4. Bifurcations in Linear Systems.- 8.5. Nonhomogeneous Linear Systems.- 8.6. Linear Systems with 1-periodic Coefficients.- 9. Near Equilibria.- 9.1. Asymptotic Stability from Linearization.- 9.2. Instability from Linearization.- 9.3. Liapunov Functions.- 9.4. An Invariance Principle.- 9.5. Preservation of a Saddle.- 9.6. Flow Equivalence Near Hyperbolic Equilibria.- 9.7. Saddle Connections.- 10. In the Presence of a Zero Eigenvalue.- 10.1. Stability.- 10.2. Bifurcations.- 10.3. Center Manifolds.- 11. In the Presence of Purely Imaginary Eigenvalues.- 11.1. Stability.- 11.2. Poincaré-Andronov-Hopf Bifurcation.- 11.3. Computing Bifurcation Curves.- 12. Periodic Orbits.- 12.1. Poincaré-Bendixson Theorem.- 12.2. Stability of Periodic Orbits.- 12.3. Local Bifurcations of Periodic Orbits.- 12.4. A Homoclinic Bifurcation.- 13. All Planar Things Considered.- 13.1. Structurally Stable Vector Fields.- 13.2. Dissipative Systems.- 13.3. One-parameter Generic Bifurcations.- 13.4. Bifurcations in the Presence of Symmetry.- 13.5. Local Two-parameter Bifurcations.- 14- Conservative and Gradient Systems.- 14.1. Second-order Conservative Systems.- 14.2. Bifurcations in Conservative Systems.- 14.3. Gradient Vector Fields.- 15. Planar Maps.- 15.1. Linear Maps.- 15.2. Near Fixed Points.- 15.3. Numerical Algorithms and Maps.- 15.4. Saddle Node and Period Doubling.- 15.5. Poincaré-Andronov-Hopf Bifurcation.- 15.6. Area-preserving Maps.- IV: Higher Dimensions.- 16. Dimension Two and One Half.- 16.1. Forced Van der Pol.- 16.2. Forced Duffing.- 16.3. Near a Transversal Homoclinic Point.- 16.4. Forced and Damped Duffing.- 17. Dimension Three.- 17.1. Period Doubling.- 17.2. Bifurcation to Invariant Torus.- 17.3. Silnikov Orbits.- 17.4. The Lorenz Equations.- 18. Dimension Four.- 18.1. Integrable Hamiltonians.- 18.2. A Nonintegrable Hamiltonian.- Farewell.- APPENDIX: A Catalogue of Fundamental Theorems.- References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Analysis.