Logo - springer
Slogan - springer

Mathematics - Analysis | Understanding Analysis

Understanding Analysis

Abbott, Stephen

2001, XII, 260 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.95

(net) price for USA

ISBN 978-0-387-21506-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$54.95

(net) price for USA

ISBN 978-0-387-95060-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$54.95

(net) price for USA

ISBN 978-1-4419-2866-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Introduction to the Problems in Analysis outlines an elementary, one semester course which exposes students to both the process of rigor, and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Does the Cantor set contain any irrational numbers? Can the set of points where a function is discontinuous be arbitrary? Can the rational numbers be written as a countable intersection of open sets? Is an infinitely differentiable function necessarily the limit of its Taylor series? Giving these topics center stage, the motivation for a rigorous approach is justified by the fact that they are inaccessible without it.

Content Level » Lower undergraduate

Keywords » adopted-textbook NY

Related subjects » Analysis

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Real Functions.